CSC242: Intro to Al

Adversarial Search
Part 11

Today

@ How to improve MINIMAX to make it more
practical

@ Details of Othello project

@ How to generalize MINIMAX for uncertainty
and hidden information

Alpha-Beta Pruning

Alpha-Beta Pruning

@ How can we make MiniMax run faster, without sacrificing
optimality?

@ During MINIMAX search keep track of

@ o: value of best choice so far for MAX (lower
bound on MAX utility)

@ B: value of best choice so far for MIN (upper
bound on MIN utility)

@ Prune when value of node is known to be worse than «
(for MAX) or B (for MIN)

3

MAX A

MIN Y 3 K

'V YYYVYVVV VY

n 3 8 2 4 6 14 2 5

2

D

A [-00,+00]

%N

'V YYYVYVVV VY

MAX

MIIN

'V YYYVYVVV VY

MIN B [-oo,+oo]K

MAX

MAX

MIN B [-oo,+|2]ﬂ

'V YYYVYVVV VY

Wi

'V YYVYVVV VY

12 3

'V YYVYVVV VY

2 3 8

A [3"00]

MAX

MIN [-oo,+3]ﬂ
AAAAAAAAA

2 3 8

D

A [3"00]

MAX

MIN B ARCRE] R,z] D
'VYYVVVYVVYY

2 3 8 2

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta(Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax

AlphaBeta(origin, 0, -inf, +inf, player)

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then
return Eval (State)
1f player == +1 then
for each action i1n Actions(state, player)
beta = max(beta, AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* beta cut-off */
return alpha
else /* player == -1 */
for each action i1n Actions(state, player)
alpha = min(alpha,AlphaBeta (Result (state,action),
depth+1, alpha, beta, -player))
if beta <= alpha then break /* alpha cut-off */
return beta
end

Alpha-Beta H-Minimax Returning Move

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then return (Eval (State), null)
best = null /* to handle case where no move is possible */
1f player == +1 then
for each action in Actions (state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+1l, alpha, beta, -player)
1f value > alpha then
alpha = value
best = action
if beta <= alpha then break /* beta cut-off */
return (alpha, best)
else /* player == -1 */
for each action i1in Actions (state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+1l, alpha, beta, -player)
if value < beta then
beta = wvalue
best = action
if beta <= alpha then break /* alpha cut-off */

return (beta, best)
en

Alpha-Beta H-Minimax Returning Move

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then return (Eval (State), null)
best = null /* to handle case where no move is possible */
1f player == +1 then
for each action in Actions (state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+1l, alpha, beta, -player)
1f value > alpha then
alpha = value
best = action
if beta <= alpha then break /* beta cut-off */
return (alpha, best)
else /* player == -1 */
for each action i1in Actions (state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+1l, alpha, beta, -player)
if value < beta then
beta = wvalue
best = action
if beta <= alpha then break /* alpha cut-off */

return (beta, best)
en

Alpha-Beta H-Minimax Returning Move

function AlphaBeta(state, depth, alpha, beta, player)
1f CutoffTest (state, depth) then return (Eval (State), null)
best = null /* to handle case where no move is possible */
1f player == +1 then
for each action in Actions (state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+1l, alpha, beta, -player)
1f value > alpha then
alpha = value
best = action
if beta <= alpha then break /* beta cut-off */
return (alpha, best)
else /* player == -1 */
for each action i1in Actions (state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+1l, alpha, beta, -player)
if value < beta then
beta = wvalue
best = action
if beta <= alpha then break /* alpha cut-off */

return (beta, best)
en

Alpha-Beta H-Minimax Returning Move

function AlphaBeta (state, depth, alpha, beta, player)
if CutoffTest (state, depth) then return (Eval (State), null)
best = null /* to handle case where no move is possible */
1f player == +1 then
for each action i1n Actions (state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+l, alpha, beta, -player)
1f value > alpha then
alpha = value
best = action
if beta <= alpha then break /* beta cut-off */
return (alpha, best) /* best is ignored if not needed */
else /* player == -1 */
for each action in Actions(state, player)
child = Result (state, action)
value = AlphaBeta(child, depth+l, alpha, beta, -player)
1f value < beta then
beta = value
best = action
if beta <= alpha then break /* alpha cut-off */

return (beta, best)
en

Alpha-Beta Pruning

@ Still MINIMAX search
@ Optimal (if you search to the terminals)

@ Optimal with respect to your heuristic
function otherwise

Alpha-Beta Pruning
Analysis

Alpha-Beta Pruning

Analysis
|ldeal case:

Always explore the best successor first: O(bm/ 2)
Branching factor: bl/?% = Vb

Explore twice as deep a tree in same time

Alpha-Beta Pruning

Analysis
Random case:

Explore successors in random order: O(bgm/4)
Branching factor: b3/4

Explore 4/3 as deep a tree in same time

Alpha-Beta Pruning
Analysis

“Smart’ case:

Example: in chess, expand a successor early
if it is a capture

Use the static evaluation function to
determine the order for expanding children

Alpha-Beta Summary

@ Easy bookkeeping modification of basic
MINIMAX algorithm

@ Not hard to come up with “useful” node
orderings

@ Even random gets you 33% deeper search

® Works with other ways of improving game
tree search

Project 1: Othello
CEE)

@ Write a (champion!)
Othello player

@ Phase I: 4-Ply
Alpha-Beta Search

@ Phase II: Time-
limited Search

@ Phase III: Time-
budgeted Search

What We Give You

@ Othello GUI program

@ Binary code for a player (to play against
your program)

@ Pseudocode for alpha-beta heuristic game
tree search

What You Give Us

@ Othello player program

® Reads moves from <stdin>, writes moves to
<stdout>

@ Runs on Linux (at least)

@ Written in any language - Java, C++, Python,
Ruby, Lisp, ...

@ Write-up describing your design choices (worth
25% of project grade)

Input / Output
Language

@ Input: Moves by opponent

@18 # upper left hand corner
@ Output: Moves by player

@8 1 # lower right hand corner

@ Our program determines if a player wins or
makes and illegal moves (immediate loss)

Project Subtasks

@ Choose data structures and programming language
@ Turn alpha-beta pseudocode info real code
@ Design, implement, and test

@ Move generator (Actions(state,player))

@ Transition function (Apply(state,action))

@ Static evaluator (Eval(state))

@ Cut-off test (CutoffTest(state,depth))

Phases

@ Phase I tests correct implementation of move
generator and your static evaluation function

@ Phases II and III will require a more
sophisticated cut-off function

@ Use your time per move or time budget
for game wisely

@ Real-time decision making

Teams

@ Posted by 7pm tonight on course web page:
@ 2 person teams (randomly assigned by me)

@ Specification of the <stdio> input/output
language

@ GUI is currently in beta-test - email Dan
Scarafoni <dscarafo@u.rochester.edu> to join the
beta test and/or report bugs

@ Final release no later than Sunday

mailto:dscarafo@u.rochester.edu

Beyond Deterministic Games
of Perfect Information

¥
HUNGER GAMI

Types of Games

Deterministic
(no chance)

Nondeterministic
(dice, cards, etc.)

Perfect information
(fully observable)

Imperfect information

(partially observable)

Zero-sum (total payoff the
same in any game)

Arbitrary utility functions

Stochastic Games

® A player’s possible
moves depend on
chance (random)
elements, e.g., dice

® Must generalize our
notion of a game tree
to include “chance”
nodes

CHANCE

CHANCE

1,1

/\

TERMINAL

Expectation

® Weighted average of possibilities

® Sum of the possible outcomes weighted by
the likelihood of their occurrence

® VWhat you would expect to win in the long
run

Expecti-Minimax

® Same as MINIMAX for MIN and MAX
nodes

® Same backing up utilities from terminal
nodes

® Jake expectation over chance nodes

® Weighted average of possible outcomes

CHANCE

CHANCE

1,1

/\

TERMINAL

Expecti-Minimax

EMINIMAX(s) =
UTILITY(S) if TERMINAL-TEST(s)
max, EMINIMAX(RESULT(S, a)) if PLAYER(s) = MAX
min, EMINIMAX(RESULT(S, a)) if PLAYER(s) = MIN

> P(r)EMINIMAX(RESULT(S, 7)) if PLAYER(S) = CHANCE

Partial Observability

® Some of the state of the world is hidden
(unobservable)

® There is some uncertainty about the state
of the world

Partially-Observable
Games

® Some of the state of the game is hidden
from the player(s)

® |nteresting because:
® Valuable real-world games (e.g., poker)

® Partial observability arises all the time in
real-world problems

Partially-Observable
Games

® Deterministic partial observability
® Opponent has hidden state

® Battleship, Stratego, Kriegspiel

Partially-Observable
Games

® Deterministic partial observability
® Opponent has hidden state
® Battleship, Stratego, Kriegspiel
® Stochastic partial observability
® Missing/hidden information is random

® Card games: bridge, hearts, poker (most)

Stochastic Partially
Observable Games

\!
'ﬂ 5 A @ =
- | Y
\ N #
: - ?""A- l / " % Q
. - 2 F 5) ot Pry -0
] 7 .« 3 : { : ’

= »

< | g

*
*

¢
*

o

(exchuging royal Nush and straight fush)

= & sV
&‘:

v
. v

Sirak

Frequency

Approx.
Probability

Approx. Approx.
Cumulative Odds

Mathematical expression of absolute
froquency

(1)
(1)() - ()
1))
(i
5)()- (1))

1))

WWeighted Minimax

® For each possible deal s:
® Assume s is the actual situation
® Compute Minimax or H-Minimax value of s
® Weight value by probability of s

® Jake move that yields highest expected value
over all the possible deals

WWeighted Minimax

argmax Z P(s)MINIMAX(RESULT(s,a))

a
S

WWeighted Minimax

argmax Z P(s)MINIMAX(RESULT(s,a))

a
203 _ 10, 400, 600
13

S

(39 — 1.48338977 x 10'°

Monte Carlo Methods

® Use a “representative” sample to
approximate a large, complex distribution

Monte Carlo Minimax

N
|
argmax - Z MINIMAX(RESULT(s;, a))

a i=1

= Apps

|] Home

& = C N) www.computerpokercompetition.org

Henry Kautz UR ﬂ Calendar

& pocs Y Gmail

09 ANNUAL
Computer Poker Competition

2014 ACPC Workshop

There will be a workshop on Computer Poker and Imperfect
Information at AAAI. This year AAAI is in Quebec City,
Canada, from July 27 until July 31. The workshop will be a
one-day event on either the 27th or the 28th (we don't know
which yet). Papers accepted at the workshop will be
published as technical reports by AAAI. The chairs of the

workshop are Sam Ganzfried and Eric Jackson.

For more information, please see the workshop website:

http://www.cs.cmu.edu/~sganzfri/AAAI14 Workshop.html

-

[:] Stores

Hangouts D UR Logins (:] Finanacial

Home About Competitions ¥ Downloads Vv

Forums Contact

2014 Call for Participation

The Annual Computer Poker Competition will be held again
in 2014, during the month of June. Neil Burch will be
returning as one of the competition chairs, with Kevin
Waugh replacing Eric Jackson as the second chair. As in
previous years there will be heads-up (two player) limit,
three player limit, and heads-up no-limit Texas Hold'em
competitions. There are a number of changes in the
competition this year, with an event being removed, an
event being added, and a few smaller changes.

For the first time, we will feature a three player Kuhn poker
bankroll tournament. Despite the simplicity of the game, it
is unsolvable. That is, unlike in two-player zero-sum
games, an agent playing its portion of a Nash equilibrium is
not optimal and can be taken advantage of by two
coordinated agents. The intent of this contest is to provide
a venue to investigate opponent modeling techniques that
for statistical or computational reasons cannot be applied
in three player Texas Hold'em. Additionally, we hope the
drastic reduction in implementation effort will appeal to new
competitors and promote a more open environment.

There is one major change in the events which are
returning from last year: for heads-up limit, there will still be
a total bankroll event, but there will be no instant runoff

w8 %9 0=

»

Summary

® Non-deterministic games

® Expecti-MINIMAX: Compute expected
MINIMAX value over chance nodes

® Partially observable games

® Weighted MINIMAX: Compute expected
value over possible hidden states

® When tree becomes too large, sample
branches rather than explore exhaustively

For Next Time:
AIMA 6.0-6.4

