CSC242: Intro to AI

Lecture 9

Propositional Inference

Factored Representation

- Splits a state into variables (factors, attributes, features, "things you know") that can have values
- Factored states can be more or less similar (unlike atomic states)
- Can also represent uncertainty (don't know value of some attribute)

Constraint Satisfaction Problem (CSP)

```
X: Set of variables { X<sub>1</sub>, ..., X<sub>n</sub> }
D: Set of domains { D<sub>1</sub>, ..., D<sub>n</sub> }
Each domain D<sub>i</sub> = set of values { v<sub>1</sub>, ..., v<sub>k</sub> }
C: Set of constraints { C<sub>1</sub>, ..., C<sub>m</sub> }
```

Hunt the Wumpus

If you perceive a stench, then there the wumpus is in an adjacent square.

$$(At_{i,j} \land S_{i,j}) \Rightarrow (W_{i-1,j} \lor W_{i+1,j} \lor W_{i,j-1} \lor W_{i,j+1})$$

Hungry	Cranky	
true	false	
false	true	
true	true	
false	false	

Hungry V Cranky

Hungry ⇒ Cranky

Which Worlds are Ruled Out?

Hungry ⇒ Cranky

A sentence or set of sentences in propositional logic reduces the number of possible worlds by ruling out some of them.

• Model:

- An assignment that satisfies a sentence or set of sentences
- == A possible world where those sentences are true, and so is not ruled out by them
- May be the real world! (When?)

Unsatisfiable

- A sentence or set of sentences is unsatisfiable when:
 - No complete, consistent assignment of truth values to the propositions that makes the sentence or set of sentences true
- Rules out all possible worlds
- Cannot describe the actual world

Inference

- What other things are we justified in believing, assuming our background knowledge and perceptions are accurate?
- What other sentences are true, given our background knowledge and perceptions?
- Does a given sentence or set of sentences follow from our knowledge?

What does it mean to "follow from" our knowledge?

Entailment

- α entails β when:
 - β is true in <u>every</u> world considered possible by α
 - Every model of α is also a model of β
 - Notation: $\alpha \models \beta$

What are the worlds for Hungry?

Hungry=true, Cranky=false

Hungry=false, Cranky=true

Hungry=true, Cranky=true Hungry=false, Cranky=false

What are the worlds for Hungry?

Hungry=true, Cranky=false

Hungry=false, Cranky=true

Hungry=true, Cranky=true Hungry=false, Cranky=false

What are the worlds for Hungry?
What are the worlds for (Hungry v Cranky?)

Hungry=true, Cranky=false

Hungry=false, Cranky=true

Hungry=true, Cranky=true Hungry=false, Cranky=false

What are the worlds for Hungry?
What are the worlds for (Hungry v Cranky?)

Model Checking Algorithm for $\alpha \models \beta$

```
for every possible world W: if W makes \alpha true and \beta false: return "No, \alpha does not entail \beta" return "Yes, \alpha entails \beta"
```

What is the Difference Between

$$\alpha \Rightarrow \beta$$

$$\alpha \models \beta$$

What is the Difference Between

$$\alpha \Rightarrow \beta$$

part of sentence, like \vee or \wedge

$$\alpha \models \beta$$

relationship between sentences

But Still...

Something must be be going on between $\alpha \Rightarrow \beta$ and $\alpha \models \beta$!

To get at it, we need one more concept...

Valid

- A sentence β is valid if it is true in every possible world
 - Every assignment is a model of
 β
- Example:

$$P \lor \neg P$$

The Connection!

• Where α and β are any two sentences,

```
\alpha \models \beta (\alpha entails \beta) if and only if
```

 $\alpha \Rightarrow \beta$ is ...

The Connection!

• Where α and β are any two sentences,

```
\alpha \models \beta (\alpha \in \beta)
```

if and only if

$$\alpha \Rightarrow \beta$$
 is valid

Propositional Deduction

The Problem with Model Checking

- Although we can implement propositional model checking, we wouldn't want to
- Next class, we will start learning about first-order logic, which can describe infinite sets of models!
 - Model checking is impossible even in principle

Mechanizing Reasoning

- Can we implement logical reasoning without thinking at all about possible worlds and entailment?
- The surprising answer: YES
- Logical reasoning can be performed just by syntactic manipulations on sentences!

Georges Artrouni's mechanical brain, a translation device patented in France in 1933.

Intuition: Math

Intuition: Math

123 +456 579

Intuition: Math

$$x + 3 = 7$$
 $x + 3 - 3 = 7 - 3$
 $x = 7 - 3$
 $x = 4$

Mathematical Identities

- Allow us to rewrite equations
- Truth-preserving:
 - If the original equation holds, then so does the rewritten one

Inference Rules

- Look for rules that allow us to rewrite sentences in a truth-preserving way
- We'll call these <u>inference rules</u>, since they will allow us to do inference (draw conclusions, make implicit knowledge explicit)

Q

P	Q	P⇒Q
true	true	true
false	true	true
true	false	false
false	false	true

P	Q	P⇒Q
true	true	true
false	true	true
true	false	false
false	false	true

$$\begin{array}{c} \mathsf{P} \Rightarrow \mathsf{Q} \\ \mathsf{P} \end{array}$$

P	Q	P⇒Q
true	true	true
false	true	true
true	false	false
false	false	true

$$\begin{array}{c} \mathsf{P} \Rightarrow \mathsf{Q} \\ \mathsf{P} \end{array}$$

P	Q	P⇒Q
true	true	true
false	true	true
true	false	false
false	false	true

Entailment

- α entails β when:
 - β is true in every world considered possible by α
 - Every model of α is also a model of β
 - $Models(\alpha) \subseteq Models(\beta)$

$$\{P\Rightarrow Q, P\} \models Q$$

Modus Ponens

$$\alpha \Rightarrow \beta, \alpha$$
 β

- Modus Ponens is a sound rule of inference
- What can be derived from a set of formulas using Modus Ponens is in fact entailed by those formulas

Derivation

- β can be derived from α using inference rules
- $\bullet \alpha \vdash \beta$

Properties of Inference Rules

Soundness

- Derives only logically entailed sentences
- Truth-preserving

if
$$\alpha \vdash \beta$$
 then $\alpha \models \beta$

Completeness

Derives all logically entailed sentences

if
$$\alpha \models \beta$$
 then $\alpha \vdash \beta$

Inference Rules

$$\frac{\alpha \wedge \beta}{\alpha}$$

$$\frac{\neg \neg \alpha}{\alpha}$$

$$\frac{\neg \neg \alpha}{\alpha} \qquad \frac{\neg (\alpha \land \beta)}{\neg \alpha \lor \neg \beta} \qquad \frac{\neg (\alpha \lor \beta)}{\neg \alpha \land \neg \beta}$$

And-elimination

Double negation

DeMorgan's Laws

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta} \qquad \frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)} \qquad \frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

Modus Ponens

Definition of biconditional

also

• Should add contrapositive rule

Want to compute whether $\alpha = \beta$

For a sound inference rule:

if
$$\alpha \vdash \beta$$
 then $\alpha \models \beta$

if
$$\alpha \vdash \gamma$$
 and $\gamma \vdash \beta$ then $\alpha \models \beta$

Proof

 Sequence of sound inference rule applications that lead from the premises to the desired conclusion

1 2 3 4

Background knowledge:

 $R_1: \neg P_{1,1}$

 $R_2: B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$

 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

Perceptions:

 $R_4: \neg B_{1,1}$

 $R_5:B_{2,1}$

Biconditional elimination on R2:

$$R_6: ((B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1}) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}))$$

And-elimination on R₆:

$$R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$$

Logical equivalence for contrapositives:

$$R_8: \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})$$

Modus Ponens on R₈ and R₄:

$$R_9: \neg (P_{1,2} \vee P_{2,1})$$

DeMorgan's Rule:

$$R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$$

And-elimination on R₁₀:

$$R_{11}: \neg P_{1,2}$$

Propositional Inference As Search

- Initial state: Set of facts (initial knowledge base)
- Actions: Apply an inference rule to the sentences that match their premises
- Result: Add conclusions of inference rule to knowledge base
- Goal: The knowledge base contains the sentence we want to prove

Theorem Proving

- Searching for proofs is an alternative to enumerating models
- "In many practical cases, finding a proof can be more efficient because the proof can ignore irrelevant propositions, no matter how many of them there are."

There's Gotta Be a Simpler Way!

Literals

- Literal: propositional variable (P) or negation of propositional variable (¬Q)
- Complementary literals: one literal is the negation of another $(P, \neg P)$

Clauses

Clause: disjunction of literals:

$$P \lor \neg Q \lor \neg R \lor \neg P$$

• Unit clause: a single literal:

Р ¬О

Unit Resolution

Complementary literals:

Positive literal: P

Negative literal: ¬P

Hungry V Cranky

¬Hungry

Cranky

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2A OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 B	3,1 P?	4,1

	•	
	A	= Agent
	B	= Breeze
	G	= Glitter, Gold
	OK	= Safe square
	P	= Pit
	S	= Stench
	\mathbf{V}	= Visited
_	W	= Wumpus
_		

Unit Resolution

• Sound: if $\alpha \vdash \beta$ then $\alpha \models \beta$

Not complete:

if
$$\alpha \models \beta$$
 then $\alpha \vdash \beta$

Resolution

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \quad m_1 \vee \cdots \vee m_j \vee \cdots \vee m_n}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \cdots \vee m_n}$$

 $l_1, ..., l_k$, $m_1, ..., m_n$ are literals l_i and m_j are complementary

Technical note: Resulting clause must be <u>factored</u> to contain only one copy of each literal.

 $\frac{P_{1,1} \vee P_{3,1}}{P_{3,1} \vee \neg P_{1,1} \vee \neg P_{2,2}}$

- I. Hungry V Cranky
- 2. ¬Sleepy ∨ ¬Hungry
- 3. Cranky V Sleepy
- 4. ¬Sleepy ∨ Cranky (1,2)
- 5. Cranky V Cranky (3,4)
- 6. Cranky (factoring)

Resolution

- Sound:
 - Easy to show if $\alpha \vdash \beta$ then $\alpha \vDash \beta$
- Complete?
 - "As good as complete"
 - if $\alpha \models \beta$ then $\alpha \vdash \beta$ ' where β ' is the same as β or is a shorter version of β
 - E.g. if $\alpha \models P \lor Q$ then

$$\alpha \vdash P \lor Q$$
 or $\alpha \vdash P$ or $\alpha \vdash Q$

TO BE TOMED TO

DON'T LET THIS BE YOU! STUDY THE HOMEWORK SOLUTIONS! REWORK PROBLEMS YOU MISSED!

Conjunctive Normal Form (CNF)

- Eliminate \Leftrightarrow : $\alpha \Leftrightarrow \beta \rightarrow \alpha \Rightarrow \beta \land \beta \Rightarrow \alpha$
- Eliminate \Rightarrow : $\alpha \Rightarrow \beta \rightarrow \neg \alpha \lor \beta$
- Move negation in:
 - \bullet $\neg \neg \alpha \rightarrow \alpha$
 - $\bullet \neg(\alpha \lor \beta) \rightarrow (\neg\alpha \land \neg\beta)$
 - $\neg(\alpha \land \beta) \rightarrow (\neg\alpha \lor \neg\beta)$
- Distribute ∨ over ∧:
 - $(\alpha \vee (\beta \wedge \gamma)) \rightarrow ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$

 $A \wedge B$

 $P \Rightarrow Q$

 $(A \lor B) \Rightarrow \neg(B \lor C)$

 $A \wedge B$

 $\neg P \lor Q$

 $\neg(A \lor B) \lor \neg(B \lor C)$

A, B

 $\neg P \lor Q$

 $(\neg A \land \neg B) \lor (\neg B \land \neg C)$

 $(\neg A \lor \neg B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg B) \land (\neg B \lor \neg C)$

 $(\neg A \lor \neg B) \land (\neg A \lor \neg C) \land \neg B \land (\neg B \lor \neg C)$

 $(\neg A \lor \neg B), (\neg A \lor \neg C), \neg B, (\neg B \lor \neg C)$

Inference Using Resolution

- Convert sentences (KB) to CNF (set of clauses)
- Apply resolution inference rule to pairs of clauses with complementary literals
- Add resulting clause to set of clauses
- Until...

Proof by Contradiction

- $\alpha \models \beta$ if and only if $(\alpha \land \neg \beta)$ is unsatisfiable
- If negation of goal is inconsistent with our knowledge
- Then the goal itself is entailed by our knowledge

Resolution Refutation

- Convert (KB $\wedge \neg \alpha$) to CNF
- Apply resolution rule until:
 - No new clauses can be added
 - κ KB does not entail α
 - Two clauses resolve to yield the empty clause
 - κ KB entails α

Proof Using Resolution

- Proof by contradiction
- Derive empty clause from (KB Λ ¬α)
 (converted to CNF, of course)

Effective Resolution

- Definite clauses
 - Disjunction of literals with <u>exactly</u> one positive literal
- Horn clauses
 - Disjunction of literals with <u>at most</u> one positive literal
- Natural reading as facts and "if-then" rules

Forward Chaining

- Knowledge base of definite clauses: facts and rules
- If premises of a rule (conjunction of literals) are known
 - Add its conclusion (single literal) to set of known facts
- Until either query is added or no further inferences can be made

Backward Chaining

- Work backward from query q
- If q is known to be true, we are done
- Otherwise find all rules whose conclusion (head) is q
 - If all the premises (body) of one of those rules can be proven true, then q is true

Effective Resolution

- Definite clauses
 - Disjunction of literals with <u>exactly</u> one positive literal
- Horn clauses
 - Disjunction of literals with <u>at most</u> one positive literal
- Natural reading as facts and "if-then" rules

Propositional Inference

- Entailment: "follows from our knowledge"
- Model checking
 - Intractable
 - But see also AIMA 7.6 & Project 2

Propositional Inference

- Inference rules: soundness, completeness
- Searching for proofs is an alternative to enumerating models
 - May be faster in practice

Propositional Inference

- Resolution is a sound and complete inference rule
 - Works on clauses (CNF)
- Special cases:
 - Definite & Horn clauses
 - Forward and backward chaining