CSC242: Intro to Al

Lecture 13
Planning as Satisfiability
Efficient Satisfability Algorithms

Planning as Satisfiability

plan

SATPLAN

cnf
formula

STRIPS
problem encoder
description
length
mapping ™
. satisfying
Interpreter model

SAT
engine

Translating STRIPS

» Ground action = a STRIPS operator with constants
assigned to all of its parameters

» Ground fluent = a precondition or effect of a ground
action

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

constants: NY, Boston, Seattle
Ground actions:

Ground fluents:

Translating STRIPS

» Ground action = a STRIPS operator with constants
assigned to all of its parameters

» Ground fluent = a precondition or effect of a ground
action
operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

constants: NY, Boston, Seattle

Ground actions: Fly(NY,Boston), FIy(NY,Seattle),
Fly(Boston,NY), Fly(Boston,Seattle), Fly(Seattle,NY),
Fly(Seattle,Boston)

Ground fluents: Fueled, At(NY), At(Boston), At(Seattle)

Clause Schemas

Vx&e {A,B,C}P(x)
represents
P(A)AP(B)AP(C)

This 1s not the same as FOL quantification,
because we are quantifying over a set of
symbols (constants), not over the elements

of a domain of an interpretation (model).

Existential Quantification

dx € {A,B,C}P(x)
represents
P(A)v P(B)v P(C)

This 1s not the same as FOL quantification,
because we are quantifying over a set of
symbols (constants), not over the elements

of a domain of an interpretation (model).

Named Sets

It 1s often convenient to give a name to a set of constants:
T'={A,B,C}
Vx&T . P(x)

WET . 00)
means the same thing as:

Vx e {A,B,C}P(x)

dx € {A,B,C}O(x)

In full FOL, we could define sets using predicate
that 1s true just for members of the set:
T(AYAT(B)AT(C)A
VyT(y)D(y=Avy=Bvy=C)

Conditions on Quantifiers

Expressions that can be evaluated to "true" or "false"
can be added as conditions on the quantifiers in schemas.
Equality 1s interpeted as "the same symbol".
Vx,yE{A,B,C}:x=y . P(x)

expands to the ground formula
P(A,B)AP(A,C)AP(B,A)AP(B,C)ANP(C,A)AP(C,B)
Similarly,

dx,ye{A,B,C}:x=y . P(x)

expands to the ground formula

P(A,B)v P(A,C)vP(B,A)v P(B,C)vP(C,A)v P(C,B)

SAT Encoding

Time Is sequential and discrete

— Represented by integers

— Actions occur instantaneously at a time point

— Each fluent is true or false at each time point

If an action occurs at time i, then its preconditions must
hold at time |

If an action occurs at time i, then its effects must hold at
time 1+1

If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must
have occurred at time |

Two conflicting actions cannot occur at the same time

The initial state holds at time O, and the goals hold at a
given final state K

SAT Encoding

* |If an action occurs at time i, then its preconditions must
hold at time |

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled
cities: NY, Boston, Seattle

Viell,?2,...,K}
Va € {NY,Boston,Seattle}
Vb € {NY,Boston,Seattle}
fly(a,b,1) O (at(a,1) A fuel(1))

SAT Encoding

* |If an action occurs at time i, then its preconditions must
hold at time |

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled
cities: NY, Boston, Seattle

Vie Times
Va € Cities
Vb € Cities
fly(a,b,1) O (at(a,1) A fuel(1))

SAT Encoding

 |f an action occurs at time i, then its effects must hold at
time i+1

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled
constants: NY, Boston, Seattle

SAT Encoding

 |f an action occurs at time i, then its effects must hold at
time i+1

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled
constants: NY, Boston, Seattle

Vie& Times
Va € Cities
Vb € (Cities
fly(a,b,1) O (at(b,1+1)) A —~at(a,1+1) A = fuel(1+1))

SAT Encoding

* If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must

have occurred at time | operator: Fly(a,b)

precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

Vl & Times cities: NY, Boston, Seattle

Vb EC(ities
(—at(b,1) A at(b,1+1)) D
da €(ities . fly(a,b,1)

SAT Encoding

* If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must

have occurred at time | operator: Fly(a,b)

precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

Yi ETimes cities: NY, Boston, Seattle

Vb EC(ities
(—at(b,1) A at(b,1+1)) D
(fly(NY,b,1) v fly(Boston,b,1) v fly(Seattle,b,1))

SAT Encoding

* If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must

have occurred at time | operator: Fly(a.b)
» Change from true to false: precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled
Vl ETimes cities: NY, Boston, Seattle
Va &C(Cities

(at(a,1) A —at(a,1t+1)) D
1b ECities . fly(a,b,1)

Action Mutual Exclusion

* Two conflicting actions cannot occur at the same time
— Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled
cities: NY, Boston, Seattle

Action Mutual Exclusion

* Two conflicting actions cannot occur at the same time
— Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled
cities: NY, Boston, Seattle

Yi&E Times
Ya,b,c,d € Cities:a=bvc=d
~fly(a,b,1) v —~1ly(c,d,1)

Satplan Demo (blackbox)

The IPC-4 Domains

Airport: control the ground traffic [Hoffmann & Trug]

Pipesworld: control oil product flow in a pipeline network
[Liporace & Hoffmann]

Promela: find deadlocks in communication protocols
[Edelkamp]

PSR: resupply lines in a faulty electricity network
[Thiebaux & Hoffmann]

Satellite & Settlers [Fox & Long], additional Satellite
versions with time windows for sending data [Hoffmann]

UMTS: set up applications for mobile terminals [Edelkamp
& Englert]

The Competitors: Optimal planners

optimal
team repres. | l0gin planner adl Tl da | :m | til | dp
M) V. Vidal cpt 16) cpt - - -+ - - ?
N) P.Haslum | patrick 17) TP4 - lim | <+ - - -
N) P.Haslum | patrick 18) hsps_a - [lim | + | - - .
Q) H.Kautz | satplan 19) satplan - - - - - ?
P) M.Briel optiplan 20) optiplan - - - - - -
(J) E.Parker | eriqueparquer | 21) semsyn + - - - . .
R) R.Zhou zhou 22) BFHSP - - - _ Z Z

Dining Philosophers

P S ——

2004 |
Hosted at
International Conference on Automated Planning and
Scheduling

Performance Award:
1st Prize, Optimal Track

Henry Kautz, David Roznyai, Farhad Teydaye-Saheli,
Shane Neth and Michael Lindmark

$ 2 0 0 “SATPLANO04”

Whist Stefan Edelkamp Jorg Hoffmann
stler, June 6, 2004 IPC-4 Co-Chairs Classical Part

Blackbox Demo

SAT Algorithms

Resolution Refutation Proof

DAG, where leaves are input clauses
Internal nodes are resolvants
Root is false (empty clause) KEB:
Pty |f the unicorn is

mythical, then it is

immortal,
(~A, H) (~ H) (~1, H) e if it is not mythical, it is
\ SN an animal
(M, A) (~A)) (~m,1) * If the unicorn is either
| immortal or an animal,
\ / \ / then it is horned.
(M) (~ M) Prove: the unicorn is

horned.
N 0/

Efficient Backtrack Search
for Satisfiability Testing

Basic Backtrack Search for a Satisfying Model

Solve(F): return Search(F, { });

Search(F, assigned):

If all variables in F are in assigned then
If assigned |= F then return assigned;
else return FALSE;

choose unassigned variable X;

return Search(F, assigned U {x=0}) ||

Search(F, assigned U {x=1});
end;

Is this algorithm complete?
What is its running time??

Basic Backtrack Search for a Satisfying Model

Solve(F): return Search(F, { });

Search(F, assigned):

If all variables in F are in assigned then
If assigned |= F then return assigned;
else return FALSE;

choose unassigned variable X;

return Search(F, assigned U {x=0}) ||

Search(F, assigned U {x=1});
end;

Is this algorithm complete? YES
What is its running time??

Basic Backtrack Search for a Satisfying Model

Solve(F): return Search(F, { });

Search(F, assigned):

If all variables in F are in assigned then
If assigned |= F then return assigned;
else return FALSE;

choose unassigned variable X;

return Search(F, assigned U {x=0}) ||

Search(F, assigned U {x=1});
end;

Is this algorithm complete? YES
What is its running time”? O(2") and o(2")

Propagating Constraints

* Suppose formula contains
(AvBv~C)
and we set A=0.

* What is the resulting constraint on the
remaining variables B and C?
(Bv~C)
* Suppose instead we set A=1. What is the
resulting constraint on B and C?
No constraint

Empty Clauses and Formulas

* Suppose a clause In F is shortened until it
become empty. What does this mean about
F and the partial assignment?

F cannot be satisfied by any way of completing
the assignment; must backtrack

» Suppose all the clauses in F disappear.
What does this mean?

F is satisfied by any completion of the partial
assignment

Better Backtrack Search

Search(F, assigned):
If F is empty then return assigned;
If F contains [] then return FALSE;
choose an unassigned variable c
return Search(F e c, assigned U {c}) ||
Search(F e ~c , assigned U {~c});
end

Fe L = remove clauses from F that contain literal L, and
shorten clauses In F that contain ~L

Unit Propagation

* Suppose a clause in F is shortened to
contain a single literal, such as
(L)
What should you do?

Immediately add the literal to assigned.

This may shorten some clauses and erase other
clauses.

Repeat if another single-literal clause appears.

Even Better Backtrack Search

Search(F, assigned):
If F is empty then return assigned;
If F contains [] then return FALSE;
If F contains a unit clause [L] then
return Search(F o L, assigned U {L})
else
choose an unassigned variable c

return Search(F e c, assigned U {c}) ||
Search(F e ~c , assigned U {~c});
end

Fe L = remove clauses from F that contain literal L, and
shorten clauses in F that contain ~L

Pure Literal Rule

* Suppose a literal L appears in F, but the
negation of L never appears. What should
you do?

Immediately add the literal to assigned.
This will erase some clauses, but not shorten any.

Davis-Putnam-Logemann-Loveland
Procedure (DPLL)

DPLL(F, assigned):
If F is empty then return assigned;
If F contains [] then return FALSE;
If F contains a unit clause [L] or a pure literal L then
return Search(F o L, assigned U {L})
else
choose an unassigned variable c
return Search(F e c, assigned U {c}) ||
Search(F e ~c , assigned U {~c});
end

Fe L = remove clauses from F that contain literal L, and
shorten clauses in F that contain ~L

DPLL on the Unicorn

(~M, 1) () H
(M,A) (M) \

(~I,H) (=) ()

(~A,H) (~A) \
(~ H) /
/ NO SEARCH!

Converting DPLL Tree to a Resolution

Proofl
Add missing H ()
branches \
Attach clauses to /
leafs L A H)
Label interior =) \
nodes with M (A H)
resolution of (~A,H) |
children \

l =my WOA

/ N\

(~1, H) (~M,I)

DPLL and Resolution

DPLL is thus computational equivalent to
creating a tree-shaped resolution proof

In theory, since resolution is not restricted to
tree-shaped proofs, it should be "better"

In practice, the overhead of resolution makes it
much worse

Scaling Up

* For decades, DPLL was considered only useful for
"toy" problems

« Starting around 1996, researchers improved DPLL
using
— Good heuristics for choosing variable for branching
— Caching
— Clever Data Structures

* Today, modern versions of DPLL are used to solve
big industrial problems in hardware and software
verification, automated planning and scheduling,
cryptography, and many other areas

What is BIG?

Consider a real world Boolean Satisfiability (SAT) problem

The instance bmc-ibm-6.cnf, IBM LSU 1997:

pcnfb
~170 l.e., ((notx_1)orx_7)
~160 ((not x_1) or x_6)

—150
140D etc.

—130

—120 x_1, x_2, x_3, etc. our Boolean variables

—1-80 (set to True or False)
—9150

—914 0

—9130

9-120 Set x_1to False ?77?
—9110

—910 0

—9—-16 0

—17 23 0

—17 22 0

10 pages later:

1

185 -9 0

185 -10

177 169 161 153 145 137 129 121 113 105 97
89 81 73 65 57 49 41

332517911850

136 —187 0

136 —138 0

l.e., (x_177 or x_169 or x_161 or x_153 ...
X 33 orx 25o0rx_17 or x_9 or x_1 or (not x_185))

clauses / constraints are getting more interesting...

Note x 1 ...

4000 pages later:

10236 —10050 0

10236 —10051 0

10236 —10235 0

10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 100138 10019 10020 10021
10022 10023 10024 10025 10026 10027 10023
10029 10030 10031 10032 10033 10034 10035
10036 10037 10086 10087 10088 10089 10090
10091 10092 10093 10094 10095 10096 10097
10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 —55 —54 53 —52 —51 50
10047 10043 10049 10050 10051 10235 —10236 0

10237 —10008 0

10237 —10009 0

10237 —10010 0

Finally, 15,000 pages later:

—7 2600
7 —2600
1072 1070 0
—15 —14 —13 —12 —-11 —-10 0
_1R 14 _12 172 1110 n

CSC 244 Logical Foundations of
Artificial Intelligence

—7—6-5—-43-20
—7—6-5-4320
185 0
Search space of truth assignments: HOW?

2°0%00 ~ 3.160699437 - 10"

Current SAT solvers solve this instance in
approx. 1 minute!

Local Search Strategies

Greedy Local Search

state = choose_start_state();
while | GoalTest(state) do
state ;= arg min { h(s) | s in Neighbors(state) }
end
return state;

* Terminology:
— “neighbors” instead of “children”
— heuristic h(s) is the “objective function”, no need to be admissible

* No guarantee of finding a solution
— sometimes: probabilistic guarantee

» Best goal-finding, not path-finding
* Many variations

Greedy Local Search for SAT

state = choose_start state();
while ! GoalTest(state) do
state := arg min { h(s) | s in Neighbors(state) }
end
return state;

» start = random truth assignment

* GoalTest = formula is satisfied

* h = number of unsatisfied clauses
* neighbors = flip one variable

unsat clauses

Local Search Landscape

unsat clauses

Local Search Landscape

Local Minimum

A (OD<—s
k I

OG000

&/

Variations of Greedy Search

Where to start?
— RANDOM STATE
— PRETTY GOOD STATE

What to do when a local minimum is reached?
- STOP
— KEEP GOING

Which neighbor to move to?
— (Any) BEST neighbor
— (Any) BETTER neighbor

How to make greedy search more robust?

Restarts

for run =1 to max_runs do
state = choose_start_state();
flip = 0O;
while | GoalTest(state) && flip++ < max_flips do
state ;= arg min { h(s) | s in Neighbors(state) }
end
It GoalTest(state) return state;

end
return FAIL

Uphill Moves: Random Noise

state = choose_start state();
while ! GoalTest(state) do
with probability noise do
state = random member Neighbors(state)
else

state := arg min { h(s) | s in Neighbors(state) }
end
end
return state;

Random Walk for SAT

* Observation: if a clause is unsatisfied, at
least one variable in the clause must be
different in any global solution

(Av~BvC)

* Suppose you randomly pick a variable from
an unsatisfied clause to flip. What is the
probability this was a good choice?

Random Walk for SAT

* Observation: if a clause is unsatisfied, at
least one variable in the clause must be
different in any global solution

(Av~BvC)

* Suppose you randomly pick a variable from
an unsatisfied clause to flip. What is the
probability this was a good choice?

1
clause length

Pr(good choice) =

Random Walk Local Search

state = choose_start state();

while ! GoalTest(state) do
clause := random member { C | C is a clause of F and

C is false in state }

var ;= random member { X | X is a variable in clause }
state[var] := 1 — state|var];

end

return state;

Properties of Random Walk

» If clause length = 2:
— 50% chance of moving in the right direction
— Converges to optimal with high probability in O(n?)
time

absorbing reflecting

50% 50%

I -

0 n/2 n | d- Hamming Distance

Greedy Random Walk

state = choose_start state();
while ! GoalTest(state) do
clause := random member { C | C is a clause of F and
C is false In state };
with probability noise do
var ;= random member { X | X is a variable in clause };
else
var := arg_min(x) { #unsat(s) | x is a variable in clause,
s and state differ only on x};
end
state[var] := 1 — state|var];
end
return state;

Coming Up

@ Pick up solution to Homework 3
@ Right after break: Exam 2 Logic
® based on Homework 3

@ If you did not get your Exam 1 back, pick up
a solution sheet

@ Phase II Othello players due after break!

