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Translating STRIPS
• Ground action = a STRIPS operator with constants 

assigned to all of its parameters 
• Ground fluent = a precondition or effect of a ground 

action 
  operator: Fly(a,b) 

   precondition: At(a), Fueled 
   effect: At(b), ~At(a), ~Fueled 

  constants: NY, Boston, Seattle 
Ground actions: Fly(NY,Boston), Fly(NY,Seattle), 

Fly(Boston,NY), Fly(Boston,Seattle), Fly(Seattle,NY), 
Fly(Seattle,Boston) 

Ground fluents:  Fueled, At(NY), At(Boston), At(Seattle)



Translating STRIPS
• Ground action = a STRIPS operator with constants 

assigned to all of its parameters 
• Ground fluent = a precondition or effect of a ground 

action 
  operator: Fly(a,b) 

   precondition: At(a), Fueled 
   effect: At(b), ~At(a), ~Fueled 

  constants: NY, Boston, Seattle 
Ground actions: Fly(NY,Boston), Fly(NY,Seattle), 

Fly(Boston,NY), Fly(Boston,Seattle), Fly(Seattle,NY), 
Fly(Seattle,Boston) 

Ground fluents:  Fueled, At(NY), At(Boston), At(Seattle)



Clause Schemas
∀x ∈ {A,B,C}P(x)
represents
P(A)∧P(B)∧P(C)

This is not the same as FOL quantification, 
because we are quantifying over a set of 
symbols (constants), not over the elements 
of a domain of an interpretation (model).



Existential Quantification
∃x ∈ {A,B,C}P(x)
represents
P(A)∨P(B)∨P(C)

This is not the same as FOL quantification, 
because we are quantifying over a set of 
symbols (constants), not over the elements 
of a domain of an interpretation (model).



Named Sets
It is often convenient to give a name to a set of constants:
T = {A,B,C}
∀x ∈ T  .  P(x)
∃y ∈ T  .  Q(y)
means the same thing as:
∀x ∈ {A,B,C}P(x)
∃x ∈ {A,B,C}Q(x)
In full FOL, we could define sets using predicate
that is true just for members of the set:
T (A)∧T (B)∧T (C)∧
∀y.T (y)⊃ (y = A∨ y = B∨ y =C)



Conditions on Quantifiers
Expressions that can be evaluated to "true" or "false"
can be added as conditions on the quantifiers in schemas.
Equality is interpeted as "the same symbol".
∀x, y ∈ {A,B,C} : x ≠ y .  P(x)
expands to the ground formula
P(A,B)∧P(A,C)∧P(B,A)∧P(B,C)∧P(C,A)∧P(C,B)
Similarly,
∃x, y ∈ {A,B,C} : x ≠ y .  P(x)
expands to the ground formula
P(A,B)∨P(A,C)∨P(B,A)∨P(B,C)∨P(C,A)∨P(C,B)



SAT Encoding
• Time is sequential and discrete 

– Represented by integers 
– Actions occur instantaneously at a time point 
– Each fluent is true or false at each time point 

• If an action occurs at time i, then its preconditions must 
hold at time i 

• If an action occurs at time i, then its effects must hold at 
time i+1 

• If a fluent changes its truth value from time i to time i+1, 
one of the actions with the new value as an effect must 
have occurred at time i 

• Two conflicting actions cannot occur at the same time 
• The initial state holds at time 0, and the goals hold at a 

given final state K



SAT Encoding
• If an action occurs at time i, then its preconditions must 

hold at time i

∀i ∈{1,2,...,K}
   ∀a ∈{NY,Boston,Seattle}
      ∀b∈{NY,Boston,Seattle}
         fly(a,b,i)⊃ (at(a,i)∧ fuel(i))

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

cities: NY, Boston, Seattle



SAT Encoding
• If an action occurs at time i, then its preconditions must 

hold at time i

∀i ∈ Times
   ∀a ∈ Cities
      ∀b∈ Cities
         fly(a,b,i)⊃ (at(a,i)∧ fuel(i))

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

cities: NY, Boston, Seattle



SAT Encoding
• If an action occurs at time i, then its effects must hold at 

time i+1
operator: Fly(a,b) 

precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

constants: NY, Boston, Seattle



SAT Encoding
• If an action occurs at time i, then its effects must hold at 

time i+1

∀i ∈ Times
   ∀a ∈ Cities
      ∀b∈ Cities
         fly(a,b,i)⊃ (at(b,i+1))∧¬at(a,i+1)∧¬fuel(i+1))

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

constants: NY, Boston, Seattle



SAT Encoding
• If a fluent changes its truth value from time i to time i+1, 

one of the actions with the new value as an effect must 
have occurred at time i

  

∀i ∈Times
      ∀b∈Cities
        (¬at(b,i) ∧ at(b,i+1)) ⊃
             ∃a ∈Cities . fly(a,b,i)

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

cities: NY, Boston, Seattle



SAT Encoding
• If a fluent changes its truth value from time i to time i+1, 

one of the actions with the new value as an effect must 
have occurred at time i

  

∀i ∈Times
      ∀b∈Cities
        (¬at(b,i) ∧ at(b,i+1)) ⊃
              (fly(NY,b,i) ∨ fly(Boston,b,i) ∨ fly(Seattle,b,i))

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

cities: NY, Boston, Seattle



SAT Encoding
• If a fluent changes its truth value from time i to time i+1, 

one of the actions with the new value as an effect must 
have occurred at time i 

• Change from true to false:

  

∀i ∈Times
      ∀a ∈Cities
        (at(a,i) ∧¬at(a,i+1)) ⊃
             ∃b∈Cities . fly(a,b,i)

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

cities: NY, Boston, Seattle



Action Mutual Exclusion
• Two conflicting actions cannot occur at the same time 

– Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

cities: NY, Boston, Seattle



Action Mutual Exclusion
• Two conflicting actions cannot occur at the same time 

– Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 

cities: NY, Boston, Seattle

∀i ∈ Times
    ∀a,b,c,d ∈ Cities : a ≠ b∨c ≠ d
              ¬fly(a,b,i)∨¬fly(c,d,i)



Satplan Demo (blackbox)



The IPC-4 Domains
• Airport: control the ground traffic [Hoffmann & Trüg]  
• Pipesworld: control oil product flow in a pipeline network 

[Liporace & Hoffmann]  
• Promela: find deadlocks in communication protocols 

[Edelkamp] 
• PSR: resupply lines in a faulty electricity network 

[Thiebaux & Hoffmann] 
• Satellite & Settlers [Fox & Long], additional Satellite 

versions with time windows for sending data [Hoffmann] 
• UMTS: set up applications for mobile terminals [Edelkamp 

& Englert]



The Competitors: Optimal planners



Dining Philosophers



Hosted at!
International Conference on Automated Planning and 

Scheduling

Whistler, June 6, 2004
Stefan Edelkamp     Jörg Hoffmann !

IPC-4 Co-Chairs Classical Part

Performance Award: !
1st Prize, Optimal Track

Henry Kautz, David Roznyai, Farhad Teydaye-Saheli, !
Shane Neth and Michael Lindmark 

“SATPLAN04”$ 200



Blackbox Demo



SAT Algorithms



Resolution Refutation Proof

DAG, where leaves are input clauses 
Internal nodes are resolvants 
Root is false (empty clause)

(~ A , H)

(M , A)

(~ H) (~I , H)

(~ M)

(~ M, I)(~I)(~A)

(M)

()

KB: 
• If the unicorn is 

mythical, then it is 
immortal,  

• if it is not mythical, it is 
an animal 

• If the unicorn is either 
immortal or an animal, 
then it is horned. 

Prove: the unicorn is 
horned.



Efficient Backtrack Search 
 for Satisfiability Testing



Basic Backtrack Search for a Satisfying Model

Solve( F ): return Search(F, { }); 
!
Search( F, assigned ): 
 if all variables in F are in assigned then 
  if assigned |= F then return assigned; 
  else return FALSE; 
 choose unassigned variable x; 
 return Search(F, assigned U {x=0}) || 
   Search(F, assigned U {x=1}); 
end; 
    

Is this algorithm complete? 
What is its running time?  



Basic Backtrack Search for a Satisfying Model

Solve( F ): return Search(F, { }); 
!
Search( F, assigned ): 
 if all variables in F are in assigned then 
  if assigned |= F then return assigned; 
  else return FALSE; 
 choose unassigned variable x; 
 return Search(F, assigned U {x=0}) || 
   Search(F, assigned U {x=1}); 
end; 
    

Is this algorithm complete?  YES 
What is its running time?  



Basic Backtrack Search for a Satisfying Model

Solve( F ): return Search(F, { }); 
!
Search( F, assigned ): 
 if all variables in F are in assigned then 
  if assigned |= F then return assigned; 
  else return FALSE; 
 choose unassigned variable x; 
 return Search(F, assigned U {x=0}) || 
   Search(F, assigned U {x=1}); 
end; 
    

Is this algorithm complete?  YES 
What is its running time?  O(2n) and o(2n) 



Propagating Constraints

• Suppose formula contains 
   (A v B v ~C) 

 and we set A=0.   
• What is the resulting constraint on the 

remaining variables B and C? 
   (B v ~C) 

• Suppose instead we set A=1.  What is the 
resulting constraint on B and C? 
   No constraint



Empty Clauses and Formulas

• Suppose a clause in F is shortened until it 
become empty.  What does this mean about 
F and the partial assignment? 
 F cannot be satisfied by any way of completing 

the assignment; must backtrack 
• Suppose all the clauses in F disappear.  

What does this mean? 
 F is satisfied by any completion of the partial 

assignment



Better Backtrack Search

Search( F, assigned ): 
 if F is empty then return assigned; 
 if F contains [ ] then return FALSE; 
 choose an unassigned variable c 
 return Search(F • c, assigned U {c})   || 
      Search(F • ~c , assigned U {~c}); 
end 
!
F• L = remove clauses from F that contain literal L, and 
           shorten clauses in F that contain ~L



Unit Propagation

• Suppose a clause in F is shortened to 
contain a single literal, such as 
   (L) 

 What should you do? 
Immediately add the literal to assigned. 
This may shorten some clauses and erase other 

clauses. 
Repeat if another single-literal clause appears.



Even Better Backtrack Search

Search( F, assigned ): 
 if F is empty then return assigned; 
 if F contains [ ] then return FALSE; 
 if F contains a unit clause [L] then 
          return Search(F • L, assigned U {L})  
    else 
          choose an unassigned variable c 
       return Search(F • c, assigned U {c})   || 
            Search(F • ~c , assigned U {~c}); 
end 
!
F• L = remove clauses from F that contain literal L, and 
           shorten clauses in F that contain ~L



Pure Literal Rule

• Suppose a literal L appears in F, but the 
negation of L never appears.  What should 
you do? 
 Immediately add the literal to assigned. 

This will erase some clauses, but not shorten any.



Davis-Putnam-Logemann-Loveland 
Procedure (DPLL)

DPLL( F, assigned ): 
 if F is empty then return assigned; 
 if F contains [ ] then return FALSE; 
 if F contains a unit clause [L] or a pure literal L then 
          return Search(F • L, assigned U {L})  
    else 
          choose an unassigned variable c 
       return Search(F • c, assigned U {c})   || 
            Search(F • ~c , assigned U {~c}); 
end 
!
F• L = remove clauses from F that contain literal L, and 
           shorten clauses in F that contain ~L



DPLL on the Unicorn

(~ A , H)

(M , A)

(~ H)

(~I , H)

(~ M, I) H

(~I)

(~A)

A
(M)

M

(I)

I

( )

NO SEARCH!



Converting DPLL Tree to a Resolution 
Proof

Add missing 
branches 

Attach clauses to 
leafs 

Label interior 
nodes with 
resolution of 
children

(~ A , H)

(M , A)

(~ H)

(~I , H) (~ M, I)

H

A

M

I (~ M, H)

(A, H)

(H)

( )



DPLL and Resolution

DPLL is thus computational equivalent to 
creating a tree-shaped resolution proof 

In theory, since resolution is not restricted to 
tree-shaped proofs, it should be "better" 

In practice, the overhead of resolution makes it 
much worse



Scaling Up
• For decades, DPLL was considered only useful for 

"toy" problems 
• Starting around 1996, researchers improved DPLL 

using 
– Good heuristics for choosing variable for branching 
– Caching 
– Clever Data Structures 

• Today, modern versions of DPLL are used to solve 
big industrial problems in hardware and software 
verification, automated planning and scheduling, 
cryptography, and many other areas



I.e.,  ((not x_1) or x_7) 
        ((not x_1) or x_6) 

 etc.

What is BIG? 

                    

x_1, x_2, x_3, etc. our   Boolean variables 
(set to True or False)

Set x_1 to False ??

Consider a real world Boolean Satisfiability (SAT) problem
    



I.e., (x_177 or x_169 or x_161 or x_153 … 
x_33 or x_25 or x_17 or x_9 or x_1 or (not x_185))  

!
clauses / constraints are getting more interesting…

10 pages later:

               

…

Note x_1  …



4000 pages later:

                             

…



Finally, 15,000 pages later:

                                     

Current SAT solvers solve this instance in  
approx. 1  minute!

Search space of truth assignments: HOW?

CSC 244 Logical Foundations of !
Artificial Intelligence



Local Search Strategies



Greedy Local Search
state = choose_start_state(); 
while ! GoalTest(state) do 

state := arg min { h(s) | s in Neighbors(state) } 
end 
return state; 
!
• Terminology:  

– “neighbors” instead of “children” 
– heuristic h(s) is the “objective function”, no need to be admissible 

• No guarantee of finding a solution 
– sometimes: probabilistic guarantee 

• Best goal-finding, not path-finding 
• Many variations 



Greedy Local Search for SAT
state = choose_start_state(); 
while ! GoalTest(state) do 

state := arg min { h(s) | s in Neighbors(state) } 
end 
return state; 
!
!

• start = random truth assignment 
• GoalTest = formula is satisfied 
• h = number of unsatisfied clauses 
• neighbors = flip one variable 
!



Local Search Landscape
# 

un
sa
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Local Search Landscape
# 

un
sa

t c
la

us
es

Local Minimum

Plateau



Variations of Greedy Search
• Where to start? 

– RANDOM STATE 
– PRETTY GOOD STATE 

• What to do when a local minimum is reached? 
– STOP 
– KEEP GOING 

• Which neighbor to move to? 
– (Any) BEST neighbor 
– (Any) BETTER neighbor 

• How to make greedy search more robust?



Restarts
for run = 1 to max_runs do 
 state = choose_start_state(); 
 flip = 0; 
 while ! GoalTest(state) && flip++ < max_flips do 
  state := arg min { h(s) | s in Neighbors(state) } 
 end 
 if GoalTest(state) return state; 
end 
return FAIL



Uphill Moves: Random Noise
 state = choose_start_state(); 
 while ! GoalTest(state) do 
  with probability noise do 
   state = random member Neighbors(state) 
  else  
   state := arg min { h(s) | s in Neighbors(state) } 
  end 
 end 
 return state;



Random Walk for SAT

• Observation: if a clause is unsatisfied, at 
least one variable in the clause must be 
different in any global solution 
    (A v ~B v C) 

• Suppose you randomly pick a variable from 
an unsatisfied clause to flip.  What is the 
probability this was a good choice?



Random Walk for SAT

• Observation: if a clause is unsatisfied, at 
least one variable in the clause must be 
different in any global solution 
    (A v ~B v C) 

• Suppose you randomly pick a variable from 
an unsatisfied clause to flip.  What is the 
probability this was a good choice?

1
Pr(good choice)

clause length
≥



Random Walk Local Search

state = choose_start_state(); 
while ! GoalTest(state) do 

clause := random member { C | C is a clause of F and 
        C is false in state } 
var := random member { x | x is a variable in clause } 
state[var] := 1 – state[var]; 

end 
return state;



Properties of Random Walk

• If clause length = 2:  
– 50% chance of moving in the right direction 
– Converges to optimal with high probability in O(n2) 

time

reflecting



Greedy Random Walk
state = choose_start_state(); 
while ! GoalTest(state) do 

clause := random member { C | C is a clause of F and 
        C is false in state }; 
with probability noise do 
 var := random member { x | x is a variable in clause }; 
else 
 var := arg_min(x) { #unsat(s) | x is a variable in clause, 
                s and state differ only on x}; 
end 
state[var] := 1 – state[var]; 

end 
return state;



Coming Up

Pick up solution to Homework 3



Right after break: Exam 2 Logic



based on Homework 3



If you did not get your Exam 1 back, pick up 
a solution sheet



Phase II Othello players due after break!


