
CSC242: Intro to AI
Lecture 13

Planning as Satisfiability

Efficient Satisfiability Algorithms

Planning as Satisfiability

SATPLAN

cnf
formula

satisfying
modelplan

mapping
length

STRIPS
problem

description

SAT
engine

encoder

interpreter

Translating STRIPS
• Ground action = a STRIPS operator with constants

assigned to all of its parameters
• Ground fluent = a precondition or effect of a ground

action
 operator: Fly(a,b)

 precondition: At(a), Fueled
 effect: At(b), ~At(a), ~Fueled

 constants: NY, Boston, Seattle
Ground actions: Fly(NY,Boston), Fly(NY,Seattle),

Fly(Boston,NY), Fly(Boston,Seattle), Fly(Seattle,NY),
Fly(Seattle,Boston)

Ground fluents: Fueled, At(NY), At(Boston), At(Seattle)

Translating STRIPS
• Ground action = a STRIPS operator with constants

assigned to all of its parameters
• Ground fluent = a precondition or effect of a ground

action
 operator: Fly(a,b)

 precondition: At(a), Fueled
 effect: At(b), ~At(a), ~Fueled

 constants: NY, Boston, Seattle
Ground actions: Fly(NY,Boston), Fly(NY,Seattle),

Fly(Boston,NY), Fly(Boston,Seattle), Fly(Seattle,NY),
Fly(Seattle,Boston)

Ground fluents: Fueled, At(NY), At(Boston), At(Seattle)

Clause Schemas
∀x ∈ {A,B,C}P(x)
represents
P(A)∧P(B)∧P(C)

This is not the same as FOL quantification,
because we are quantifying over a set of
symbols (constants), not over the elements
of a domain of an interpretation (model).

Existential Quantification
∃x ∈ {A,B,C}P(x)
represents
P(A)∨P(B)∨P(C)

This is not the same as FOL quantification,
because we are quantifying over a set of
symbols (constants), not over the elements
of a domain of an interpretation (model).

Named Sets
It is often convenient to give a name to a set of constants:
T = {A,B,C}
∀x ∈ T . P(x)
∃y ∈ T . Q(y)
means the same thing as:
∀x ∈ {A,B,C}P(x)
∃x ∈ {A,B,C}Q(x)
In full FOL, we could define sets using predicate
that is true just for members of the set:
T (A)∧T (B)∧T (C)∧
∀y.T (y)⊃ (y = A∨ y = B∨ y =C)

Conditions on Quantifiers
Expressions that can be evaluated to "true" or "false"
can be added as conditions on the quantifiers in schemas.
Equality is interpeted as "the same symbol".
∀x, y ∈ {A,B,C} : x ≠ y . P(x)
expands to the ground formula
P(A,B)∧P(A,C)∧P(B,A)∧P(B,C)∧P(C,A)∧P(C,B)
Similarly,
∃x, y ∈ {A,B,C} : x ≠ y . P(x)
expands to the ground formula
P(A,B)∨P(A,C)∨P(B,A)∨P(B,C)∨P(C,A)∨P(C,B)

SAT Encoding
• Time is sequential and discrete

– Represented by integers
– Actions occur instantaneously at a time point
– Each fluent is true or false at each time point

• If an action occurs at time i, then its preconditions must
hold at time i

• If an action occurs at time i, then its effects must hold at
time i+1

• If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must
have occurred at time i

• Two conflicting actions cannot occur at the same time
• The initial state holds at time 0, and the goals hold at a

given final state K

SAT Encoding
• If an action occurs at time i, then its preconditions must

hold at time i

∀i ∈{1,2,...,K}
 ∀a ∈{NY,Boston,Seattle}
 ∀b∈{NY,Boston,Seattle}
 fly(a,b,i)⊃ (at(a,i)∧ fuel(i))

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

cities: NY, Boston, Seattle

SAT Encoding
• If an action occurs at time i, then its preconditions must

hold at time i

∀i ∈ Times
 ∀a ∈ Cities
 ∀b∈ Cities
 fly(a,b,i)⊃ (at(a,i)∧ fuel(i))

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

cities: NY, Boston, Seattle

SAT Encoding
• If an action occurs at time i, then its effects must hold at

time i+1
operator: Fly(a,b)

precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

constants: NY, Boston, Seattle

SAT Encoding
• If an action occurs at time i, then its effects must hold at

time i+1

∀i ∈ Times
 ∀a ∈ Cities
 ∀b∈ Cities
 fly(a,b,i)⊃ (at(b,i+1))∧¬at(a,i+1)∧¬fuel(i+1))

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

constants: NY, Boston, Seattle

SAT Encoding
• If a fluent changes its truth value from time i to time i+1,

one of the actions with the new value as an effect must
have occurred at time i

∀i ∈Times
 ∀b∈Cities
 (¬at(b,i) ∧ at(b,i+1)) ⊃
 ∃a ∈Cities . fly(a,b,i)

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

cities: NY, Boston, Seattle

SAT Encoding
• If a fluent changes its truth value from time i to time i+1,

one of the actions with the new value as an effect must
have occurred at time i

∀i ∈Times
 ∀b∈Cities
 (¬at(b,i) ∧ at(b,i+1)) ⊃
 (fly(NY,b,i) ∨ fly(Boston,b,i) ∨ fly(Seattle,b,i))

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

cities: NY, Boston, Seattle

SAT Encoding
• If a fluent changes its truth value from time i to time i+1,

one of the actions with the new value as an effect must
have occurred at time i

• Change from true to false:

∀i ∈Times
 ∀a ∈Cities
 (at(a,i) ∧¬at(a,i+1)) ⊃
 ∃b∈Cities . fly(a,b,i)

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

cities: NY, Boston, Seattle

Action Mutual Exclusion
• Two conflicting actions cannot occur at the same time

– Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

cities: NY, Boston, Seattle

Action Mutual Exclusion
• Two conflicting actions cannot occur at the same time

– Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

cities: NY, Boston, Seattle

∀i ∈ Times
 ∀a,b,c,d ∈ Cities : a ≠ b∨c ≠ d
 ¬fly(a,b,i)∨¬fly(c,d,i)

Satplan Demo (blackbox)

The IPC-4 Domains
• Airport: control the ground traffic [Hoffmann & Trüg]
• Pipesworld: control oil product flow in a pipeline network

[Liporace & Hoffmann]
• Promela: find deadlocks in communication protocols

[Edelkamp]
• PSR: resupply lines in a faulty electricity network

[Thiebaux & Hoffmann]
• Satellite & Settlers [Fox & Long], additional Satellite

versions with time windows for sending data [Hoffmann]
• UMTS: set up applications for mobile terminals [Edelkamp

& Englert]

The Competitors: Optimal planners

Dining Philosophers

Hosted at!
International Conference on Automated Planning and

Scheduling

Whistler, June 6, 2004
Stefan Edelkamp Jörg Hoffmann !

IPC-4 Co-Chairs Classical Part

Performance Award: !
1st Prize, Optimal Track

Henry Kautz, David Roznyai, Farhad Teydaye-Saheli, !
Shane Neth and Michael Lindmark

“SATPLAN04”$ 200

Blackbox Demo

SAT Algorithms

Resolution Refutation Proof

DAG, where leaves are input clauses
Internal nodes are resolvants
Root is false (empty clause)

(~ A , H)

(M , A)

(~ H) (~I , H)

(~ M)

(~ M, I)(~I)(~A)

(M)

()

KB:
• If the unicorn is

mythical, then it is
immortal,

• if it is not mythical, it is
an animal

• If the unicorn is either
immortal or an animal,
then it is horned.

Prove: the unicorn is
horned.

Efficient Backtrack Search 
 for Satisfiability Testing

Basic Backtrack Search for a Satisfying Model

Solve(F): return Search(F, { });
!
Search(F, assigned):
 if all variables in F are in assigned then
 if assigned |= F then return assigned;
 else return FALSE;
 choose unassigned variable x;
 return Search(F, assigned U {x=0}) ||
 Search(F, assigned U {x=1});
end;

Is this algorithm complete?
What is its running time?

Basic Backtrack Search for a Satisfying Model

Solve(F): return Search(F, { });
!
Search(F, assigned):
 if all variables in F are in assigned then
 if assigned |= F then return assigned;
 else return FALSE;
 choose unassigned variable x;
 return Search(F, assigned U {x=0}) ||
 Search(F, assigned U {x=1});
end;

Is this algorithm complete? YES
What is its running time?

Basic Backtrack Search for a Satisfying Model

Solve(F): return Search(F, { });
!
Search(F, assigned):
 if all variables in F are in assigned then
 if assigned |= F then return assigned;
 else return FALSE;
 choose unassigned variable x;
 return Search(F, assigned U {x=0}) ||
 Search(F, assigned U {x=1});
end;

Is this algorithm complete? YES
What is its running time? O(2n) and o(2n)

Propagating Constraints

• Suppose formula contains
 (A v B v ~C)

 and we set A=0.
• What is the resulting constraint on the

remaining variables B and C?
 (B v ~C)

• Suppose instead we set A=1. What is the
resulting constraint on B and C?
 No constraint

Empty Clauses and Formulas

• Suppose a clause in F is shortened until it
become empty. What does this mean about
F and the partial assignment?
 F cannot be satisfied by any way of completing

the assignment; must backtrack
• Suppose all the clauses in F disappear.

What does this mean?
 F is satisfied by any completion of the partial

assignment

Better Backtrack Search

Search(F, assigned):
 if F is empty then return assigned;
 if F contains [] then return FALSE;
 choose an unassigned variable c
 return Search(F • c, assigned U {c}) ||
 Search(F • ~c , assigned U {~c});
end
!
F• L = remove clauses from F that contain literal L, and
 shorten clauses in F that contain ~L

Unit Propagation

• Suppose a clause in F is shortened to
contain a single literal, such as
 (L)

 What should you do?
Immediately add the literal to assigned.
This may shorten some clauses and erase other

clauses.
Repeat if another single-literal clause appears.

Even Better Backtrack Search

Search(F, assigned):
 if F is empty then return assigned;
 if F contains [] then return FALSE;
 if F contains a unit clause [L] then
 return Search(F • L, assigned U {L})
 else
 choose an unassigned variable c
 return Search(F • c, assigned U {c}) ||
 Search(F • ~c , assigned U {~c});
end
!
F• L = remove clauses from F that contain literal L, and
 shorten clauses in F that contain ~L

Pure Literal Rule

• Suppose a literal L appears in F, but the
negation of L never appears. What should
you do?
 Immediately add the literal to assigned. 

This will erase some clauses, but not shorten any.

Davis-Putnam-Logemann-Loveland
Procedure (DPLL)

DPLL(F, assigned):
 if F is empty then return assigned;
 if F contains [] then return FALSE;
 if F contains a unit clause [L] or a pure literal L then
 return Search(F • L, assigned U {L})
 else
 choose an unassigned variable c
 return Search(F • c, assigned U {c}) ||
 Search(F • ~c , assigned U {~c});
end
!
F• L = remove clauses from F that contain literal L, and
 shorten clauses in F that contain ~L

DPLL on the Unicorn

(~ A , H)

(M , A)

(~ H)

(~I , H)

(~ M, I) H

(~I)

(~A)

A
(M)

M

(I)

I

()

NO SEARCH!

Converting DPLL Tree to a Resolution
Proof

Add missing
branches

Attach clauses to
leafs

Label interior
nodes with
resolution of
children

(~ A , H)

(M , A)

(~ H)

(~I , H) (~ M, I)

H

A

M

I (~ M, H)

(A, H)

(H)

()

DPLL and Resolution

DPLL is thus computational equivalent to
creating a tree-shaped resolution proof

In theory, since resolution is not restricted to
tree-shaped proofs, it should be "better"

In practice, the overhead of resolution makes it
much worse

Scaling Up
• For decades, DPLL was considered only useful for

"toy" problems
• Starting around 1996, researchers improved DPLL

using
– Good heuristics for choosing variable for branching
– Caching
– Clever Data Structures

• Today, modern versions of DPLL are used to solve
big industrial problems in hardware and software
verification, automated planning and scheduling,
cryptography, and many other areas

I.e., ((not x_1) or x_7)
 ((not x_1) or x_6)

 etc.

What is BIG?

x_1, x_2, x_3, etc. our Boolean variables
(set to True or False)

Set x_1 to False ??

Consider a real world Boolean Satisfiability (SAT) problem

I.e., (x_177 or x_169 or x_161 or x_153 …
x_33 or x_25 or x_17 or x_9 or x_1 or (not x_185))

!
clauses / constraints are getting more interesting…

10 pages later:

…

Note x_1 …

4000 pages later:

…

Finally, 15,000 pages later:

Current SAT solvers solve this instance in
approx. 1 minute!

Search space of truth assignments: HOW?

CSC 244 Logical Foundations of !
Artificial Intelligence

Local Search Strategies

Greedy Local Search
state = choose_start_state();
while ! GoalTest(state) do

state := arg min { h(s) | s in Neighbors(state) }
end
return state;
!
• Terminology:

– “neighbors” instead of “children”
– heuristic h(s) is the “objective function”, no need to be admissible

• No guarantee of finding a solution
– sometimes: probabilistic guarantee

• Best goal-finding, not path-finding
• Many variations

Greedy Local Search for SAT
state = choose_start_state();
while ! GoalTest(state) do

state := arg min { h(s) | s in Neighbors(state) }
end
return state;
!
!

• start = random truth assignment
• GoalTest = formula is satisfied
• h = number of unsatisfied clauses
• neighbors = flip one variable
!

Local Search Landscape

un
sa

t c
la

us
es

Local Search Landscape

un
sa

t c
la

us
es

Local Minimum

Plateau

Variations of Greedy Search
• Where to start?

– RANDOM STATE
– PRETTY GOOD STATE

• What to do when a local minimum is reached?
– STOP
– KEEP GOING

• Which neighbor to move to?
– (Any) BEST neighbor
– (Any) BETTER neighbor

• How to make greedy search more robust?

Restarts
for run = 1 to max_runs do
 state = choose_start_state();
 flip = 0;
 while ! GoalTest(state) && flip++ < max_flips do
 state := arg min { h(s) | s in Neighbors(state) }
 end
 if GoalTest(state) return state;
end
return FAIL

Uphill Moves: Random Noise
 state = choose_start_state();
 while ! GoalTest(state) do
 with probability noise do
 state = random member Neighbors(state)
 else
 state := arg min { h(s) | s in Neighbors(state) }
 end
 end
 return state;

Random Walk for SAT

• Observation: if a clause is unsatisfied, at
least one variable in the clause must be
different in any global solution
 (A v ~B v C)

• Suppose you randomly pick a variable from
an unsatisfied clause to flip. What is the
probability this was a good choice?

Random Walk for SAT

• Observation: if a clause is unsatisfied, at
least one variable in the clause must be
different in any global solution
 (A v ~B v C)

• Suppose you randomly pick a variable from
an unsatisfied clause to flip. What is the
probability this was a good choice?

1
Pr(good choice)

clause length
≥

Random Walk Local Search

state = choose_start_state();
while ! GoalTest(state) do

clause := random member { C | C is a clause of F and
 C is false in state }
var := random member { x | x is a variable in clause }
state[var] := 1 – state[var];

end
return state;

Properties of Random Walk

• If clause length = 2:
– 50% chance of moving in the right direction
– Converges to optimal with high probability in O(n2)

time

reflecting

Greedy Random Walk
state = choose_start_state();
while ! GoalTest(state) do

clause := random member { C | C is a clause of F and
 C is false in state };
with probability noise do
 var := random member { x | x is a variable in clause };
else
 var := arg_min(x) { #unsat(s) | x is a variable in clause,
 s and state differ only on x};
end
state[var] := 1 – state[var];

end
return state;

Coming Up

Pick up solution to Homework 3

Right after break: Exam 2 Logic

based on Homework 3

If you did not get your Exam 1 back, pick up
a solution sheet

Phase II Othello players due after break!

