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Othello Tournament
Phase I Results

@ DS-DH
@ Deep-Blue

@ EvanMariaPlayer

@ Hyphaene-
Thebaica

@ KautzPlayer

@ OR-KC

@ a-a

@ alaska-boat

@ bent-paperclips

@ blake-phelps

@ crazy-pingpong
@ delicious-fudge
@ digital-teapot
@ invalid-munmap
@ Is-rever

@ jar-vis

@ jesus-fish

@ no-name

@ othello-game
@ othello-player
@ problem-solved

® random-words

@ robotics-
anonymous

@ saint-inferno

® samurai-sharks

@ screaming-
banjos

@ spherical-cow

@ spline-
reticulators

@ team-victory



Best Team Name

a@Third Place:

aSe! O Extra Credit

oFirst Place:
spherical-cow



Defeated KautzPlayer

@ DS-DH @ othello-game
@ Hyphaene- @ othello-player

@ alaska-boa @ spherical-cow
@ Jar-vis @ spline-reticulators
@ jesus-fish @ team-victory

@ no-name



Best Performance

20 Extra Credit Points!

94 a-a



Best Performance




Calendar

@ April 1: ULW First Draft Due

@ April 8: Project 2: Planning Due

@ April 8: Exam 3: Probability

@ April 29: Project 3: Neural Networks Due
@ April 29: ULW Final Draft Due

@ May 9: Final Exam
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Cavity

Toothache



Combining Evidence

P (Cavity | toothache N catch)
= « (0.180,0.016) ~ (0.871,0.129)

toothache —toothache

catch —catch | catch —catch

cavity | 0.108 0.012 0.072 0.008

—cavity | 0.016 0.064 0.144 0.976




Exponential Growth of
Combinations of Evidence

P(Cavity | toothache A catch A —bleeding)

toothache —toothache

catch —catch catch —catch

bleeding | —bleeding | bleeding | —bleeding | bleeding | —bleeding | bleeding | —bleeding

cavity 7 ? ? ? 2 ? ? 7

—cavity| 7 7 7 7 7 7 7 7




Conditional
Independence

Both toothache and catch are caused by a

cavity, but neither has a direct effect on the
other

The variables are independent given the
presence or absence of a cavity

Notation: Toothache || Catch | Cavity



Benefit of Conditional
Independence Assumptions

P(Cavity | toothache A catch) =
a P(toothache | Cavity)P(catch | Cavity)P( Cavity)

Only need trobabilities -
linear in the number of evidence variables!



Bayesian Network

Data structure for compactly representing
a joint probability distributions

Leverages (conditional) independencies
between variables

Can be exponentially smaller than explicit
tabular representation of the joint
distribution

Supports many algorithms for inference and
learning



Bayesian Networks

Random Variable

Toothache




Bayesian Networks

“has direct influence on”
Toothache




Bayesian Networks

Toothache

conditionally independent given parents



Bayesian Networks



Bayesian Networks

P( Toothache | Cavity) P(Catch | Cavity)
Gepe)  Coun

Conditional Probability
Distributions



Bayesian Networks

P (Cavity)

P( Toothache | Cavity)

Toothache

Prior Probability
Distribution

P(Catch | Cavity)



Bayesian Networks

Each node corresponds to a random
variable

There is a link from X to Y if X has a direct
influence onY (no cycles; DAG)

The node for X stores the conditional
distribution P(X; | Parents(X;))

Root nodes store the priors P (X))



Bayesian Networks
How-lo

® Select random variables required to model
the domain

® Add links from causes to effects
® “Directly influences”
® No cycles

® Write down (conditional) probability
distributions for each node



Semantics of Bayesian
Networks

® Full joint distribution can be computed as
the product of the separate conditional
probabilities stored in the network

n

P(xy,...,x,) = H P(x; | parents(X;))
i=1



P (Cavity)

P( Toothache | Cavity)

Toothache

P(toothache,cavity,catch) =
P(toothache|cavity)P(catch|cavity ) P(cavity)

P(Catch | Cavity)



P ( Cavity)

P (Toothache | Cavity)

Toothache

P(—=toothache,cavity,catch) =
P(—toothache|cavity )P (catch|cavity )P (cavity)

P(Catch | Cavity)



P ( Cavity)

P (Toothache | Cavity)

Toothache

P(—'tOOthache, _lca’l]’[;tyy Catch) p—
P(—toothache|—cavity )P (catch|—cavity ) P(—cavity)

P(Catch | Cavity)



Inference in Bayesian
Networks

® A query can be answered from a Bayesian
Network by computing sums of products
of conditional probabilities from the
network



Inference in Bayesian
Networks

® A query can be answered from a Bayesian
Network by computing sums of products
of conditional probabilities from the
network

P(X |e) =



Inference in Bayesian
Networks

® A query can be answered from a Bayesian
Network by computing sums of products
of conditional probabilities from the
network

P(X |e)=aP((X,e) =



Inference in Bayesian
Networks

® A query can be answered from a Bayesian
Network by computing sums of products
of conditional probabilities from the
network

P(X|e)=aP(X,e)=a ) P(X,ey)



Inference in Bayesian
Networks

® A query can be answered from a Bayesian
Network by computing sums of products
of conditional probabilities from the
network

P(X|e)=aP(X,e)=a ) P(X,ey)

— o ZHP(Xi | parents(X;))

y 1=1









Burglary FEarthquake

/



0.001 0.002

/



Burglary

P(B) |P(B]

0.001 | 1-.08L.

P(E)

P(-E)

0.002

1-.002




0.001 0.002

/



0.001 0.002

/|

B E| P4
£ 1t | 09
t | £ | 094
J t 0.29
f 1 f | 0.001




Burglary

o
0.001

/|

P(E)
0.002
B | E| P P(-A]
t t 0.95 1-.95
i 0.94 1-.94
J t 0.29 1-.29
f | f | o0.001 1-.001




0.001 0.002

/|

B E| P4
£ 1t | 09
t | £ | 094
J t 0.29
f 1 f | 0.001




P(J[A)

0.9

0.05

Burglary

JohnCalls

P(B)

0.001

/|

P(E
0.002

B | E P(A

t ¢ 0.95

t f 0.94

/ { 0.29

/ i 0.001

.M A | P(M|

0.7

0.01




0.001 / 0.002

B | E| P
t |t | 0.95

t | f | 0094

1t [ 029

1 f [ o001

JohnCalls
A |P(J|A) A

P(M
t | 0.9 t | o7
f | 0.05 f | o001

P (Burglary | JohnCalls = True, MaryCalls = True)
P(B | j,m)



A [P(JA)
t | 0.9
E

Burglary

JohnCalls

P(B)

0.001

/|

o

0.002

B | E | P(A

t t 0.95

t f 0.94

i t 0.29

f 1 f | 0.001
R
t 0.7
f 0.01

P(B ‘ 75 m) — OzP(B,j, m)




Do) 5o o
0.001 0.002

/B
(o)
t
!
!

JohnCalls
A |P(J|A) A

[ 1005 /[ o0t

E | P(A]
t | 0.95
f | 094
t
f

0.29
0.001

P(M]

P(B|j,m)=aP(B,jm)




Do) 5o i
0.001 / 0.002

B E| P4
£l £ | 0.95
t | £ | 094
i t 0.29
1 f | 0001

JohnCalls
A |P(J|A) A

P(M]
t | 0.9 T 0.7
f 005 1001

P(B|j,m)=aP(B,jm)




0.001 / 0.002

B E| P4
£l £ | 0.95

t | £ | 004

i t 0.29

1 f | 0001

JohnCalls
A |P(JJA) A

P(M
t | 09 o7
f 10.05 /| 0.01

P(B|j,m)=aP(B,jm)=a ZZP(B,j,m,e,a)



P(J|A)

0.9

0.05

Burglary

/N

JohnCalls

o
0.001

P(E)
0.002

/|

P(A]

0.95

0.94

0.29

E
t
f
t
/

~ [~ |~ |

0.001




0.001 K//// 0.002

B E| P4
‘IID £l £ | 095
t | £ | 094
i t 0.29
1 f | 0001

JohnCalls
A |P(J]A) A | P(M]

t | 09 t | 07
f 10.05 /| 0.01




0.001 / 0.002

B E| P4
£l £ | 0.95

t | £ | 004

i t 0.29

1 f | 0001

JohnCalls
A |P(JJA) A

P(M
t | 09 o7
f 10.05 /| 0.01

P(B|j,m)=aP(B,jm)=a ZZP(B,j,m,e,a)

n

P(x1,...,2n) = HP(iUz | parents(X;))
i=1



Burglary

P(B)

0.001

N
~

JohnCalls
P(J]A)
0.9
0.05
P(B|j,m)=aP(B,j
b‘]a — LLP

o
0.002

/ L | P
t 0.95

/ 0.94

t 0.29

/ 0.001

Qorycni _

P(M]
t | 0.7
f | 0.01

P(a | b,e)

P(jla)P

m)=a » » P(B,j,m,e,a)

(m | a)



!

P(B P(E
P(b) .(()01 O.(()Oé 1-.00 _16)

B| E| pA
t | ¢ 0.(95| P(_'a‘ bv_'e)
t | f 0.94 | 1-.94 |
fl| t 0.29
f | f | 0.001

P (]| B a/) JohnCalls P ( m‘ B Cl)
P(J|A)

A A P(Jy]
; 0().695| ; 0961
P(b|j,m) = a P(b) P(e) P(a| be) P(j | a) P(m | a)+
P(b) P(e) P(—a | b,e) P(j | =a) P(m | —a)+
P(b) P(—e) P(a | b,—e)P(j | a) P(m | a)+
P(b) P(—e) P(—a | b,=e) P(j | ma) P(m | —a)



P() S mioR
CEP(—alb,—e)

I
t
t 0.94 | 1-.94 |
f

/ \ f

0.29
0.001

P(]|_'a/> JohnCalls P(m‘_'af)
A |P(J|A) A | P(M]
t 0.9 0.7
f 1 0.05 | 0.01

P(B | j,m) = a (0.00059224, 0.0014919) ~ (0.284, 0.716)




Optimizing Bayesian
Network Inference

® |t is often possible to optimize a query to a
Bayesian Network

® |dea: rearrange terms, so that each is
evaluated as few times as possible



Example: Optimizing Inference

bum—aLLP (a|b,e)P(j| a) P(m | a)




Example: Optimizing Inference

P(blj.m) = a 32 3P P() Pla | b:0) Pl | @) P(m | 0

Before optimization: 2 x 2 x 5 = 20 multiplies
P(b) ) P(jla)P(mla) Y P(alb,e)

After optimization: 1 + 2 x 3 =7 multiplies



Bayes Net loolkits

® Many Bayesian Easy as PIE
Network tOOIS are # .. FOR BEGINNERS AND EXPERTS ~®

available

K BENJAMIN
o DARLING

® Variety of built-in
optimization routines

® Just input the network
and let the system do
the work!




Worst-Case
Complexity

® Exact inference in Bayesian Networks can
be shown to be as hard as computing the
number of satisfying assighments of a
propositional logic formula

® #P-complete (harder than NP-complete)



Next Questions

® How do we learn the (conditional)
probabilities for a Bayesian Network from a
set of data?’

® How can be we do even faster approximate
probabilistic inference?



