CSC242: Intro to Al

Lecture 16 Bayesian Networks II



Learning Bayesian
Networks from Data



Kinds of Learning
Problems

® | earning the structure of the graph

® | earning the numbers in the conditional
probability tables (aka “parameter learning”)



Kinds of Data

® Each piece of data is a sample of some of
the random variables

® Each piece of data is a sample of all of the
random variables (aka “complete data”)



Easiest Case

® | earning the numbers in the conditional
probability tables (aka “parameter learning”)

® Fach piece of data is a sample of all of the
random variables (aka “complete data™)



Parameter Learning
from Complete Data

® Parameter values for a variable given its
parents are the observed frequencies

® | earning = Counting!
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Later in Course:

@ Partial data (no specifying all variables)

@ Structure learning



Approximate Inference
in Bayesian Networks



Case |I: No Evidence

® Query variable X

® Non-evidence, non-query (“hidden”)
variables: Y

e Approximate: P(X | e)



Sampling

® Generate assignments of values to the
random variables ...

® So that in the limit (as number of samples
increase), the probability of any event is
equal to the frequency of its occurrence in
the sample set






Generating Samples

® Sample each variable in topological order
® Child appears after its parents

® Choose the value for that variable
conditioned on the values already chosen
for its parents
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Cloudy true
Sprinkler
Ramn

WetGrass

P(Cloudy) = (0.5,0.5)



Cloudy true
Sprinkler  false
Rawn

WetGrass

P (Sprinkler | Cloudy = true) = (0.1,0.9)



Cloudy true
Sprinkler  false
Ramn true

WetGrass

P(Rain | Cloudy = true) = (0.8,0.2)



Cloudy true
Sprinkler  false
Ramn true
WetGrass true

P( WetGrass | Sprinkler = false, Rain = true) = (0.9,0.1)



Cloudy true
Sprinkler  false
Ramn true
WetGrass true

(Cloudy = true, Sprinkler = false, Rain = true, WetGrass = true)

Guaranteed to be a consistent estimate
(becomes exact in the large-sample limit)



Case ll: Handling

Evidence
® Query variable X

® Evidence variables £, ..., by,
® Observed values:e = < e, ..., en >

® Non-evidence, non-query (“hidden”) variables: Y

e Approximate: P(X | e)



P(Rain | Sprinkler = true)

(Cloudy = true, Sprinkler = false, Rain = true, WetGrass = true)



Rejection Sampling

Generate sample from the prior
distribution specified by the network

Reject sample if inconsistent with the
evidence

Use remaining samples to estimate
probability of event



P(Rain | Sprinkler = true)

100 samples
Sprinkler=false: 73

Sprinkler=true: 27

Raimnm=true: 8

Rain=false: |9

19
— 22 = (0.296, 0.704)




Rejection Sampling

Generate sample from the prior
distribution specified by the network

Reject sample if inconsistent with the
evidence

Use remaining samples to estimate
probability of event

Problem: Fraction of samples consistent
with the evidence drops exponentially with
number of evidence variables



Likelihood WVeighting

® Generate only samples consistent with the
evidence

® j.e. fix values of evidence variables

® |nstead of counting | for each non-rejected
sample, weight the count by the likelihood
(probability) of the sample given the
evidence



Cloudy
Sprinkler

Ramn

WetGrass

w = 1.0

P(Rain|Sprinkler = true, WetGrass = true)



Cloudy true

Sprinkler
Ramn

WetGrass
w = 1.0

P(Rain|Sprinkler = true, WetGrass = true)



Cloudy true
Sprinkler  true

Ramn

WetGrass
w=1.0x0.1=0.10

P(Rain|Sprinkler = true, WetGrass = true)



Cloudy true
Sprinkler  true

Rawn true

WetGrass
w=1.0x0.1=0.10

P(Rain|Sprinkler = true, WetGrass = true)



Cloudy true

Sprinkler  false
Ramn true
WetGrass true

w=1.0x0.1 x0.99 =
0.099

P(Rain|Sprinkler = true, WetGrass = true)



Cloudy true
Sprinkler  false

Ramn true
WetGrass true

w=1.0x0.1x0.99 =
0.099

P(Rain|Sprinkler = true, WetGrass = true)
w = 0.099

(Cloudy = true, Sprinkler = true, Rain = true, Wetgrass = true)



Likelihood WVeighting

® (Generate sample using topological order

® Evidence variable: Fix value to evidence
value and update weight of sample using
probability in network

® Non-evidence variable: Sample from
values using probabilities in the network
(given parents)



Likelihood WVeighting

® Pros:
® Doesn’t reject any samples
e Cons:

® More evidence = lower weight

® Affected by order of evidence vars in
topological sort (later = worse)



Approximate Inference
in Bayesian Networks

® Rejection Sampling

® | ikelihood Weighting



Markov Chain Monte
Carlo Simulation

e To approximate: P(X | e)

® Start with a random state
(complete assignment to the random
variables)

® Move to a neighboring state (change one
variable)

® Repeating gives a “chain” of sampled states



Conditional Markov
Independence Blanket



Markov Blanket

® The Markov Blanket of a node is its parents,
its children, and its children’s parents.

® A node is conditionally independent of all
other nodes in the network given its
Markov Blanket



MGiblss Sempétign
To approximate: P(X | e)

Start in a state with evidence variables set
to evidence values (others arbitrary)

On each step, sample the non-evidence
variables conditioned on the values of the
variables in their Markov Blankets

A form of local search! See book for
details!



Approximate Inference
in Bayesian Networks

Sampling consistent with a distribution
Rejection Sampling: simple but inefficient
Likelihood Weighting: better

Gibbs Sampling: a Markov-Chain Monte
Carlo algorithm, similar to local search

All generate consistent estimates (equal to
exact probability in the large-sample limit)




