CSC242: Intro to AI

Lecture 17
Learning from Examples

Learning from Examples

Learning

Why Learn?

- Can't anticipate all possible situations that the agent might find themselves in
- Cannot anticipate all changes that might occur over time
- Don't know how to program it other than by learning!

Dimensions of Learning

Dimensions of Learning

A Classifier

A Classifier

A Classifier

Learning a Classifier

Training Data

Edible

Edible

Poison

Learner

Classifier

Generalization

- Ability to classify items that were never seen before
- Going beyond simple memorization

Features

img9201.jpg

(color=green, leafs_per_stem=3, leaf_edge=jagged)

- The observable properties of the things to classified
- Also called "attributes"

Labels

- Classification: Symbols
- Regression: Numbers

Hypothesis Space

Training Data

Edible

Edible

Poison

- Space of possible outputs of the learning system
- Polynomial functions, decision trees, neural networks, ...

Learning Functions from Examples

Function Learning

- There is some function y = f(x)
- Hypothesis

- ullet We don't know f
- We want to learn a function h that approximates the true function f

Function Learning

• There is some function y = f(x)

Hypothesis

- ullet We don't know f
- We want to learn a function h that approximates the true function f
- Learning is a search through the space of possible hypotheses for one that will perform well

Supervised Learning

• Given a training set of N example inputoutput pairs:

```
(x_1,\ y_1),\ (x_2,\ y_2),\ ...,\ (x_N,\ y_N) where each y_j=f(x_j)
```

- ullet Discover function h that approximates f
- Search through the space of possible hypotheses for one that will perform well

Training Data

$$f(x) = y \begin{vmatrix} x & y \\ 1 & 3 \\ 2 & 6 \\ 4 & 12 \\ 5 & 15 \\ 7 & 21 \end{vmatrix}$$

$$h(x)=?$$

Evaluating Accuracy

- Training set: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Test set: Additional (x_j, y_j) pairs distinct from training set
- Test accuracy of h by comparing $h(x_j)$ to y_j for (x_j, y_j) from test set
- Generalization: Ability to handle examples in test set that were not in training test

Training Data

$$f(x) = y \begin{vmatrix} x & y \\ 1 & 3 \\ 2 & 6 \\ 4 & 12 \\ 5 & 15 \\ 7 & 21 \end{vmatrix}$$

$$h(x)=?$$

Testing Data

x	y
3	9
4	12
6	18

$$f(x) = y$$
$$h(x) = y$$
?

$$h(x) = y$$
?

Hypothesis Space

- The class of functions that are acceptable as solutions, e.g.
 - Linear functions y = mx + b
 - Polynomials (of some degree)
 - Decision trees
 - Neural networks
 - Turing machines

$$y = -0.4x + 3$$

$$y = -0.4x + 3$$
 $y = c_7 x^7 + c_6 x^6 + \dots + c_1 x + c_0$
$$= \sum_{i=0}^{7} c_i x^i$$

Occam's Razor

William of Occam (or Ockham) 14th c.

$$y = -0.4x + 3$$

$$y = c_7 x^7 + c_6 x^6 + \ldots + c_1 x + c_0$$

$$=\sum_{i=0}^{7}c_ix^i$$

$$y = c_6 x^6 + c_5 x^5 \dots + c_1 x + c_0$$

 $y = mx + b$

$$y = c_6 x^6 + c_5 x^5 \dots + c_1 x + c_0 \quad ax + b + c \sin(x)$$

 $y = mx + b$

$$y = c_6 x^6 + c_5 x^5 \dots + c_1 x + c_0 \qquad ax + b + c \sin(x)$$
$$y = mx + b$$

Error and Overfitting

- It is often preferable to allow some error in the fit of the hypothesis to the training data in order to improve generalization
- Allowing too little error resulting in a complex hypothesis with poor generalization - is overfitting
- Using too simple a hypothesis that has very high error
 resulting again in poor generalization is underfitting

Overfitting

- When a learned model adjusts to the noise in the input rather than the signal
- Becomes more likely as the hypothesis space and number of input attributes grows
- Becomes less likely as the number of training examples increases

Learning Decision Trees

Classification

- Output y = f(x) is one of a finite set of values (classes, categories, ...)
 - Boolean classification: yes/no or true/false
- Input is vector x of values for attributes
 - Factored representation

Example

- Going out to dinner with Stuart Russell
- Restaurants often busy in SF; sometimes have to wait for a table
- Decision: Do we wait or do something else?

Attributes (Features)

Alternate: is there a suitable alternative nearby

Bar: does it have a comfy bar

FriSat: is it a Friday or Saturday

Hungry: are we hungry

Patrons: None, Some, Full

Price: \$,\$\$,\$\$\$

Raining: is it raining outside

Reservation: do we have a reservation

Type: French, Italian, Thai, burger, ...

WaitEstimate: 0-10, 10-30, 30-60, >60

Decision Making

- If the host/hostess says you'll have to wait:
 - Then if there's no one in the restaurant you don't want to be there either;
 - But if there are a few people but it's not full, then you should wait
 - Otherwise you need to consider how long he/she told you the wait would be

• ...

Decision Tree

- Each node in the tree represents a test on a single attribute
- Children of the node are labelled with the possible values of the feature
- Each path represents a series of tests, and the leaf node gives the value of the function when the input passes those tests

Inducing Decision Trees From Examples

• Examples: (x,y) where x is a vector of values for the input attributes and y is a single Boolean value (yes/no, true/false)

	Input Attributes											
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait	
X	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y	
X	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y	
X	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y	
X	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y	
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y	
X	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y	
X	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y	
X	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y	
X	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y	
х	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y	
х	No	No	No	No	None	\$	No	No	Thai	0-10	y	
X	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y	

Inducing Decision Trees From Examples

- Examples: (x,y)
- Want a shallow tree (short paths, fewer tests)
- Greedy algorithm (AIMA Fig 18.5)
 - Always test the most important attribute first
 - Makes the most difference to classification of an example

	Input Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
Х	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
X	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
X	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
X	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
X	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
X	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
X	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
X	No	No	No	No	None	\$	No	No	Thai	0-10	y
x	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

	Input Attributes										Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
x	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
х	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
X	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
X	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
x	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
х	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
x	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
x	No	No	No	No	None	\$	No	No	Thai	0-10	y
x	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

Poor split: children very mixed!

	Input Attributes										Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
х	Yes	No	No	Yes	Some	<i>\$\$\$</i>	No	Yes	French	0-10	y
х	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
X	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
X	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
x	Yes	No	Yes	No	Full	<i>\$\$\$</i>	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
x	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
х	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
x	Yes	Yes	Yes	Yes	Full	<i>\$\$\$</i>	No	Yes	Italian	10-30	y
x	No	No	No	No	None	\$	No	No	Thai	0-10	y
x	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

	Input Attributes										Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
х	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
X	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
x	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
x	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
x	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
x	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
x	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
x	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
x	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
x	No	No	No	No	None	\$	No	No	Thai	0-10	y
x	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

	Input Attributes										Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
х	Yes	No	No	Yes	Some	<i>\$\$\$</i>	No	Yes	French	0-10	y
х	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
х	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
х	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
x	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
х	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
x	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
х	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
x	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
x	No	No	No	No	None	\$	No	No	Thai	0-10	y
x	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

Good split: children very unbalanced!

Entropy

- \bullet S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Information Gain

Gain(S, A) =expected reduction in entropy due to sorting on A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Entropy(S) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$$

$$Entropy(S_F) = Entropy(S_I) \equiv Entropy(S_T) = Entropy(S_B) = 1$$

$$Gain(Type) = Entropy(S) - \sum_{v \in Type} \frac{|S_v|}{|S|} Entropy(S_v) = 1 - 1 = 0$$

$$Entropy(S) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$$

$$Entropy(S_N) = -0\log_2 0 - (1)\log_2 1 = 0$$

$$Entropy(S_S) = -(1)\log_2 1 - 0\log_2 0 = 0$$

$$Entropy(S_F) = -(\frac{1}{3})\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.92$$

$$Gain(Patron) = 1 - \sum_{v \in Patron} \frac{|S_v|}{|S|} Entropy(S_v) = 1 - (\frac{1}{2})(0.92) = 0.54$$

Avoiding Overfitting

 Problem: How to determine when to stop growing the decision tree?

Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy

• produces smallest version of most accurate subtree

Effect of Reduced-Error Pruning

Evaluating Learning Mechanisms

Evaluating Learning

- Split data into training set and testing set
- Learn a hypothesis h using the training set and evaluate it on the testing set
- Start with training set of size 1 up to size N-1

Learning Curve

Error Rate

- Error rate: proportion of times $h(x) \neq y$ for an (x,y) example
 - Inverse of proportion correct (accuracy)
- Need to evaluate error rate on examples not used in training

Cross-Validation

- Randomly split data into training and testing (in some proportion)
 - Hold out test data during training
- Doesn't use all data for training

k-Fold Cross-Validation

- Divide data into k equal subsets
- Perform k rounds of learning
 - Leave out 1 subset (1/k) of the data) each round; use for testing that round
- Average test scores over k rounds

Learning
(from Examples)
Summary

Learning

- Kinds and dimensions of learning
- General framework for supervised, passive, immediate feedback learning
- Classification and Regression
- Data: training, testing, (pruning)
- Generalization, error, overfitting
- Hypothesis space: lines, curves, decision trees, ...

Coming Up

- April 8: Exam 3, Probability & Introduction to Learning
- Project 3: Learning to Recognize Faces using Neural Networks
 - Assigned: April 10th
 - Due on April 29
- April 11: Neural Networks Part I