CSC242: Intro to Al

Lecture 18:
Details on Decision Trees;
Neural Networks Part I



Details on Learning
Decision Trees




Decision lree

® Fach node in the tree represents a test on
a single attribute

® Children of the node are labelled with the
possible values of the feature

® Each path represents a series of tests, and
the leaf node gives the value of the function
when the input passes those tests



Inducing Decision Trees
From Examples

® Examples: (x,v)

® Want a shallow tree (short paths, fewer tests)
® Greedy algorithm (AIMA Fig 18.5)
® Always test the most important attribute first

® Makes the most difference to classification of
an example



Input Attributes

Will
Alt Bar Fri Hun Pat Price | Rain Res Type Est Wast
Yes No No Yes | Some | 383 No Yes || French || 0-10
Yes No No Yes Full $ No No Thai || 30-60 | y
No Yes No No Some $ No No || Burger |} 0-10
Yes No Yes Yes Full $ Yes No That || 10-30
Yes No Yes No Full $38 No Yes || French || >60 | y
No Yes No Yes | Some 33 Yes Yes || Italian || 0-10
No Yes No No None $ Yes No || Burger |} 0-10 | y
No No No Yes | Some 38 Yes Yes Thai || 0-10
No Yes Yes No Full $ Yes No || Burger |} >60 | y
Yes Yes Yes Yes Full $3$ No Yes || Italian || 10-30
No No No No None $ No No That || 0-10
Yes Yes Yes Yes Full $ No No || Burger |} 30-60
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Poor split: children very mixed!



Input Attributes

Will
Alt Bar Fri Hun Rain Res Type Est Wast
Yes No No Yes No Yes | French| 0-10
Yes No No Yes No No That | 30-60 | vy
No Yes No No No No | Burger| 0-10
Yes No Yes Yes Yes No Thai | 10-50
Yes No Yes No No Yes | French| >60 | vy
No Yes No Yes Yes Yes | Italian | 0-10
No Yes No No Yes No | Burger| 0-10 | y
No No No Yes Yes Yes Thaa 0-10
No Yes Yes No Yes No | Burger| >60 |y
Yes Yes Yes Yes No Yes | Italian | 10-30
No No No No No No Thaa 0-10
Yes Yes Yes Yes No No Burger | 30-60




Good split: children very unbalanced!



Entropy(S)

e S is a sample of training examples

e p.. is the proportion of positive examples in S

e p-. is the proportion of negative examples in .S
e Entropy measures the impurity of .S

Entropy(S) = —p. logs p. — p-log, p




Information Gain

Gain(S, A) = expected reduction in entropy due to
sorting on A

So
Gain(S, A) = Entropy(S) — X I ‘E’n,t'ropy(S,.)
veValues(A) ‘S‘




Entropy(S)=-0.51og,0.5-0.51og,0.5=1
Entropy(S,) = Entropy(S,) = Entropy(S,) = Entropy(S,;) =1

Gain(Type) = Entropy(S) — 2‘ ‘Entropy(S) 1-1=0

velype

S|
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Patrons?

Entropy(S)=-0.51og,0.5-0.5log,0.5=1
Entropy(S,)=-0log,0—-()log,1=0
Entropy(S,)=-()log,1-0log,0=0
Entropy(S;)=—(}5)log, /5—7log, 75 =0.92

V

Gain(Patron)=1-— 2 S

vePatron

Entropy(S,)=1-(}5)(0.92)=0.54




Avoiding Overfitting
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® Problem: How to determine when to stop
growing the decision tree?



Reduced-Error Pruning

oplit data into training and validation set

Do until turther pruning is harmtul:

1. Evaluate impact on validation set ot pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree




Effect of Reduced-Error Pruning
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Learning
Neural Networks
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Artificial Neural Networks

Read Ch. 4]
[Recommended exercises 4.1, 4.2, 4.5, 4.9, 4.11]

e Threshold units

e Gradient descent

e Multilayer networks
e Backpropagation

e Hidden layer representations

e Example: Face Recognition

e Advanced topics




Connectionist Models

Consider humans:
e Neuron switching time = .001 second
e Number of neurons ~ 10"
e Connections per neuron ~ 10*7°

-~

e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

e Emphasis on tuning weights automatically




When to Consider Neural Networks

e Input is high-dimensional discrete or real-valued
(e.g. raw sensor input)

e Qutput is discrete or real valued

e Qutput 1s a vector ot values

e Possibly noisy data

e Form of target function is unknown

e Human readability of result is unimportant
Examples:

e Speech phoneme recognition [Waibel]

e Image classification [Kanade, Baluja, Rowley]|

e Financial prediction




Dendrites
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Perceptron

n _‘_ >O
Z W: X; L
il

: ]iwa'. e >()
i=0 (,={ far i B

-1 otherwise

.

1 if wo+wix1 +---+wyx, >0
—1 otherwise.

\

Sometimes we’ll use simpler vector notation:

¢

1ifw-2>0

o(Z) = —1 otherwise.

\



What Do Perceptrons Do!?

® [o understand how perceptrons can
be used to solve classification
problems, we need to introduce the
concept of a decision boundary



Earthquake or Atomic
Bomb!?

S-Wave







Earthquake or Atomic
Bomb!?

S-Wave




Decision Boundary

® Path (or surface in higher dimensions) that
separates the two classes

b(x1,x2) > 0 if zis from an earthquake

< 0 if zis from an explosion



b(x1,22) =20 — 1.721 + 4.9




Linear Separator

® Decision boundary is a line
® Line in 2D, plane in 3D, hyperplane in nD

® Data that admit a linear separator are said
to be linearly seperable




Linear Classifier

wo + wixr1 + woxg =0

w-x=20

All instances of one class are above the line: w-x >0

All instances of one class are below the line: w-x <0

hw(x) = Threshold(w - x)



Perceptron

o IS Threshold Function

' OI n
Z “/l.xi | lfz w:x:>0
0= i=0 !¢
-1 otherwise

1 if wy+ w11 + -+ +w,x, >0
- —1 otherwise.

4

Sometimes we’ll use simpler vector notation:

(

lifw-2>0

o = i —1 otherwise.




Decision Surface of a Perceptron

X7 A

(a) (D)

Represents some usetul functions
e What weights represent
g(x1,x2) = AND(z1,22)?
But some tunctions not representable
e c.g., not linearly separable

e Therefore, we’ll want networks ot these...




Exercise

1 if wg+wizy+---+w,xz, >0

—1 otherwise.

® Where true =1, false = -1, what is the
perceptron for:

o NOT(x1)
o AND(x1,x2)
o OR(x1,X2)
o XOR(x1,x2)



Exercise

1 if wg+wizy+---+w,xz, >0

—1 otherwise.

® VWhere true =1, false = -1, what is the
perceptron for:

o NOT(x1) = 0((-1)x1)
o AND(x1,x2)
WD

o XOR(x1,x2)



Exercise

1 if wg+wizy+---+w,xz, >0

—1 otherwise.

® VWhere true =1, false = -1, what is the
perceptron for:

e NOT(x1) = o((-1)x1)

o AND(x1,x2) = O(x1 + X2 - |.5)
o OR(x1,x2)

o XOR(x1,x2)



Exercise

1 if wo+wizy+---+w,x, >0

—1 otherwise.

® VWhere true =1, false = -1, what is the
perceptron for:

® NOT(X;[) = O'((-|)X1)
® AND(xq,x2) = O(x1 + x2 - |.5)
o OR(Xl,Xz) = O'(Xl + Xo + 05)

o XO R(X1,X2)



Exercise

1 if wo+wizy+---+w,x, >0

—1 otherwise.

® Where true =1, false = -1, what is the
perceptron for:

® NOT(x1) = o((-1)x1)

® AND(x1,x2) = o(x1 + x2 - 1.5)
® OR(x1,Xx2) = o(x1 + x2 + 0.5)

e XOR(x1,x2) NO SOLUTION!



Decision Surface of a Perceptron

X7 A

(a) (D)

Represents some usetul functions
e What weights represent
g(x1,x2) = AND(z1,22)?
But some tunctions not representable
e c.g., not linearly separable

e Therefore, we’ll want networks ot these...




Training
® Training is using data to set the weights for a
perceptron (or network of perceptrons)
® |dea:
® Start with random weights
® For each piece of data:
® Set inputs to the data features
® Compare output to the label (target value)

® |f not same then adjust the weights



Perceptron training rule

w; — w; + Aw;

where
Aw; = n(t — o)x;

Where:
o t = ¢(¥) is target value
® 0 1s perceptron output

e 1 is small constant (e.g., .1) called learning rate



Gradient Descent

GRADIENT-DESCENT(training examples,n)

FEach training example is a pair of the form
(Z,t), where T is the vector of input values,
and t is the target output value. n is the
learning rate (e.q., .05).

e Initialize each w; to some small random value
e Until the termination condition is met, Do
— Initialize each Aw; to zero.
— For each (Z,t) in training _examples, Do
¥ Input the instance & to the unit and

compute the output o
* For each linear unit weight w;, Do

Aw; + Aw; + n(t — o)x;
— For each linear unit weight w;, Do

Wi — W; + Aw;




Justifying the Training
Rule

® Define the error E as the sum of squared
differences between the outputs and the
targets across the training set

® Goal: find weights that minimize E
® Gradient descent: Repeat:

® Compute the slope (gradient) of E with
respect to each of the current weights

® Make a small change in the weights in the
“downward” direction
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Deriving Training Rule

(lenoring Threshold Function O)
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Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w]
2. W W — nVEp|w]
Incremental mode Gradient Descent:
Do until satisfied
e For each training example d in D

1. Compute the gradient V E;|w]
2. W + W — nV Ey|w

—p 1 )
Ep|w] = 5 L ( 4 — 0d)”
V4 E

E @] = =(tq — 04)°

Incremental Gradient Dc.scc 1t can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough




Sumimary

Perceptron training rule guaranteed to succeed if

e Training examples are linearly separable

e Sufficiently small learning rate n

Linear unit training rule uses gradient descent

e Guaranteed to converge to hypothesis with
minimum squared error

e GGiven sufficiently small learning rate n

e FEven wi

hen training data contains noise

e Fven wl

hen training data not separable by H




Epochs

It can take a lot of small steps to reach the
optimal set of weights

What if you run through all the training data and
are not yet at the optimum!?

Run through the training data again ...
... and again ...
... and again!

Each pass through the training data is an epoch



Multilayer Networks of Sigmoid Units
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Sigmoid Unit

n —L :
2 = o X'o ]
nel E()" i X 0 = G(net) = —

| + ¢

o(x) is the sigmoid function
1

14+ e 7

Nice property: (/f,(:,'."‘) = o(z)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks ot sigmoid units —
Backpropagation




Coming Up
@ April 15 - Neural Network II
@ Back by Popular Demand!
@ Even better than Neural Networks I!
@ April 17 - In-Class Workshop for Project 3

@ Live highly attractive TAs will
personally help you complete the
project!

@ An afternoon you will not soon forget!



