CSC242: Intro to Al

Lecture 19:
Neural Networks Part II

Reserve Readings

3 my.rochester.edu

- ‘ my.rochester.edu/webapps/portal/frameset.jsp”tab_tab _group id= 2 1&ur 4 A c DU

:3* Apps [EJ Google+ [EJ Gmail &, Docs [Henry Kautz UR [f] Calendar [0 UR Logins (0] Stores [0l Info [0 €SC 242 A1 [Research

B ROCHIESTER orscuscs o

Main Courses Instructor Access Activities Content Collection Libraries Help

Il & HenryxauTziss v (D

&

Artificial Neural
Networks

Reserve Readings - Click to accept terms of use

Reserve Readings - Click to accept terms of use

<
ARTIFICIAL &
Chapter 4 of -
Py H Machine Learning Ch 4 Artificial Neural Networks
(CSC242.2014SPRING.294 I :

Machine Learning &

Announcements

Discussion Board

by Tom Mitchell BRSSP .

Course Materlals

Textbooks

Then here

My Crades

Course Tools

Student Resources

Artificial Neural Networks

'Read Ch. 4]
[Recommended exercises 4.1, 4.2, 4.5, 4.9, 4.11]

e Threshold units

e Gradient descent

e Multilayer networks

e Backpropagation

e Hidden layer representations
e Example: Face Recognition

e Advanced topics

Perceptron

o IS Threshold Function

' OI n
Z “/l.xi | lfz w:x:>0
0= i=0 !¢
-1 otherwise

1 if wy+ w11 + -+ +w,x, >0
- —1 otherwise.

4

Sometimes we’ll use simpler vector notation:

(

lifw-2>0

o = i —1 otherwise.

Linear Classifier

wo + wixr1 + woxg =0

w-x=20

All instances of one class are above the line: w-x >0

All instances of one class are below the line: w-x <0

hw(x) = Threshold(w - x)

b(x1,22) =20 — 1.721 + 4.9

Training
® Training is using data to set the weights for a
perceptron (or network of perceptrons)
® |dea:
® Start with random weights
® For each piece of data:
® Set inputs to the data features
® Compare output to the label (target value)

® |f not same then adjust the weights

Perceptron training rule

w; — w; + Aw;

where
Aw; = n(t — o)x;

Where:
o t = ¢(¥) is target value
® 0 1s perceptron output

e 1 is small constant (e.g., .1) called learning rate

Gradient Descent

GRADIENT-DESCENT(training examples,n)

FEach training example is a pair of the form
(Z,t), where T is the vector of input values,
and t is the target output value. n is the
learning rate (e.q., .05).

e Initialize each w; to some small random value
e Until the termination condition is met, Do
— Initialize each Aw; to zero.
— For each (Z,t) in training _examples, Do
¥ Input the instance & to the unit and

compute the output o
* For each linear unit weight w;, Do

Aw; + Aw; + n(t — o)x;
— For each linear unit weight w;, Do

Wi — W; + Aw;

20
Y
15 \\‘\\\\‘V}\\\\\\ \‘\ \\““‘\““““‘““

O N\
“7

E[w]

Gradient
OF OF OF
owy Ow, Ow,

VE|W| =

Training rule:
Aw = —nV E|w)

OF
7
/ 0 Ww;

AT w; =

Part II
Multilayer Neural Nefts
Backpropagation
Deep Learning
Face Recognition Project

Multilayer Networks of Sigmoid Units

0 head
« hid

+ hod

» had

¢ hawved
v heard
© heed
< hud

» who'd
~ hood

head hid 4 who’d hood

o) 500 1000 1400

Sigmoid Unit

n L :
of = o X]
nel ,-E:()“ i 0 = G(net) = —rr

| + ¢

How does this differ from

o(x) is the sigmoid function a Perceptron?
1 Smooth threshold
1+e2 Range O to 1, not -1 to +1
o do(x) (o
Nice property: —= = o(z)(1 — o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks ot sigmoid units —
Backpropagation

Error Gradient for a Sigmoid Unit

Error Gradient for a Sigmoid Unit

OF 0 1 5 (1).,
— 2. \Uqg — Oq)
Ow; Ow; 2dep" (
0 >
— Z ? f/ — O)
2 d 011';(()
1 9,
= —Y2(t;—o0 tg— o
0o ({ (/) 8“‘,’(d (/)
(90(/’
= X(ta — 0d) (—0“‘
();.
\‘(f) 0(),/ O‘Ilé?f,/
= — 2\lqg — Oy p
i " Onet; Ow;

But we know:
doy do(nety) | |

811(—)1‘,/- - onet, = 0a(l = 04)

Onety O(W-ZTgq) |

ow;, Ow;, 4

So:

OF :
= —) (t(/ - 0:1)011(1 o O,]).‘I.',‘,,]
Ou.*,- deD

Compare

® Perceptron:

— Y (ta — 04)04(1 — 04)x; 4

(/E[)

Multilayer Networks

® How to train the hidden
(middle) units?

® We don’t have a target beac. Jud

output for them! \N

® |dea:

® First, calculate deltas
for output units

® Use the weighted
average of these deltas
to compute a delta for
each hidden unit

who’d hood

Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

o

. For each output unit &
0 < o/ s — o) (tr — or)
3. For each hidden unit h

(511 = O//(l = Oh) 2 “-”/).l.'(sl.'

k€outputs Explain each
{4 TT | oy W, Piece of this
4. Update each network weight w; ; equation!

w; ;i < Wi+ Aw; ;
where

Aw; ; = 10;%; ;

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimuin

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
Aw; ;(n) = né;x; ; + aAw; j(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Learning Hidden Layer Representations

A target function:

Input
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

< I (W Pt P s e B

Output
10000000 |
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Training

Sum of squared errors for each output unit
0.9 1 1 1

08 F BN TN
07 F

03

b
02 F
0.1 F

Training

Weights from inputs to one hidden unit

3 - ~ = - T
el
_—
I‘(- o
-
» -
-~
~ s
- o 27 Tt
—_ ’, .
» / ‘,‘
. A
_ o
L 4
rs
- 7
1 e o’ ~ ’
’ e 4
- ,/
o P
TR ¥l e IR
e T = - o e —
O A R R L U v re s T Ny R LTI SncessunEsaanrssns s PRI e AR ARE S A AR S s s e n ans s an s an aas ans s sseenaseas
ot -~ \"‘\._-._:.'_.____-p‘? el Y
.\ \'
s .
. ~ ._\.
e i,
-~ T
_1 L . . =)
o SR e S - -
\
\
L N eIl
— N
\
\¢
\.
3 F b
- \‘
-
-~
o P Y -
. -
. —
-e - ——
A .
— - o o L1 SR,
-4 S S
| 1] |

500

Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
¢ Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as
tralning progresses

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

Using Validation Set to Prevent Overfitting

Error versus weight updates (example 1)
0.01 |\ n 1 .
0.009 Fe Training set error . g

Validation set error *
0.008 F -

0.007 F |
0.006 F T,
0.005 F

Error

0.004
0.003
0.002

0 5000 10000 15000 20000
Number of weight updates

Neural Nets for Face Recognition

lett strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-o0f-20 faces

Learned Hidden Unit Weights

left strt rght up Learned Weights

The code for this assignment is broken into several modules:

e facetrain.c: the top-level program which uses all of the modules below to implement
an image classification system. You will need to modify this code to change network
sizes and learning parameters. The performance evaluation routines
performance_on_imagelist() and evaluate performance() are also in this module:
you will need to modify these for your face and expression recognizers.

e imagenet.c: interface routines for loading images into the input units of a network, and
setting up target vectors for training. You will need to modify the routine load_target.
when implementing the face recognizer and the pose recognizer, to set up appropriate
target vectors for the output encodings vou choose.

e backprop.c, backprop.h: the neural network package. Supports three-layer fully-
connected feedforward networks, using the backpropagation algorithm for weight tun-
ing. Provides high level routines for creating. training. and using networks. You will
not need to modify any code in this module to complete the assignment.

Coming Up

@ April 17 - In-Class Workshop for
Project 3

@ Live highly attractive TAs will
personally help you complete the
project!

@ An afternoon you will not soon
forget!

