
Project 3: Neural Networks and Face Recognition

CSC 242 Introduction to Artificial Intelligence
Fall 2014

April 15, 2014

Adapted from Mitchell, Tom. “Neural Networks for Face Recognition: Companion to Chap-
ter 4 of the textbook Machine Learning”, http://www.cs.cmu.edu/t̃om/faces.html, Carnegie
Mellon University, 16 Oct 1997. Accessed 2 Apr 2014.

1 Introduction

This assignment gives you an opportunity to apply neural network learning to the problem
of face recognition. You will experiment with a neural network program to train a sunglasses
recognizer, a face recognizer, and an expression recognizer.

You will work in assigned groups of 2 or 3 students. After your group turns in your
assignment, you will each send a confidential email to xdong@cs.rochester.edu rating the
other members of your group on a scale of 3 to 0:

• 3 = did more than her share

• 2 = did her share

• 1 = did less than her share

• 0 = did nothing

The body of the email should contain the name and the score for each partner on a separate
line. We will use this information to adjust the group project score for each individual. If
scores significantly disagree, we will investigate.

You will not need to do huge amounts of coding for this assignment, and you should
not let the size of this document scare you, but training your networks will take time. It is
recommended that you read the assignment in its entirety first, and start early. You should
work closely together, sitting side by side at a computer. You can probably get the project
finished in two (long) evenings working togther like, but if you work independently it will
take much longer and you may well not finish at all. You will be modifying code written in
C.

Read this entire document before you begin. Do not start modifying the
code until you have read and discussed the functions discussed in Section 3.3
with your team.

1



1.1 The face images

The base directory of the project is /home/hoover/u1/cs242/projects-spring2014/FaceRecog/.
We refer to this directory below as BASE.

It will be easiest to complete this project using the CSUG cycle servers. Login into
cycle.csug.cs.rochester, or one of the other servers, using ssh and X-windows. If you copy
the files to your computer, note that you will have to edit the training and testing files to
change the directory paths to match where the files are on your machine.

The image data can be found in BASE/data/faces/. This directory contains 20 subdi-
rectories, one for each person, named by userid. Each of these directories contains several
different face images of the same person.

You will be interested in the images with the following naming convention:
<userid> <pose> <expression> <eyes> <scale>.pgm

• <userid> is the user id of the person in the image, and this field has 20 values: an2i,
at33, boland, bpm, ch4f, cheyer, choon, danieln, glickman, karyadi, kawamura, kk49,
megak, mitchell, night, phoebe, saavik, steffi, sz24, and tammo.

• <pose> is the head position of the person, and this field has 4 values: straight, left,
right, up.

• <expression> is the facial expression of the person, and this field has 4 values: neutral,
happy, sad, angry.

• <eyes> is the eye state of the person, and this field has 2 values: open, sunglasses.

• <scale> is the scale of the image, and this field has 3 values: 1, 2, and 4. 1 indicates
a full-resolution image (128 columns × 120 rows); 2 indicates a half-resolution image
(64 × 60); 4 indicates a quarter-resolution image (32 × 30). For this assignment, you
will be using the quarter-resolution images for experiments. This both makes training
very fast and keeps the input representation small. If you like, you can try running on
the full size images by using the “straightevenHD ” training and test file lists rather
than the ‘straighteven ” lists.

If you’ve been looking closely in the image directories, you may notice that some images
have a .bad suffix rather than the .pgm suffix. As it turns out, 16 of the 640 images taken
have glitches due to problems with the camera setup; these are the .bad images. Some
people had more glitches than others, but everyone who got “faced” should have at least 28
good face images (out of the 32 variations possible, discounting scale).

1.2 Viewing the face images

To view the images, you can use the program gimp. Gimp is available on all computing
platforms; see http://www.gimp.org/ for documentation. Gimp is installed on CSUG ma-
chines.

2



1.3 The neural network and image access code

We’re supplying C code for a three-layer fully-connected feedforward neural network which
uses the backpropagation algorithm to tune its weights. To make life as easy as possible,
we’re also supplying you with an image package for accessing the face images, as well as the
top-level program for training and testing, as a skeleton for you to modify. To help explore
what the nets actually learn, you’ll also find a utility program for visualizing hidden-unit
weights as images.

The code is located in BASE/code/. Copy all of the files in this area to your own directory,
and type make. When the compilation is done, you should have one executable program:
facetrain. Briefly, facetrain takes lists of image files as input, and uses these as training
and test sets for a neural network. facetrain can be used for training and/or recognition,
and it also has the capability to save networks to files.

Details of the routines, explanations of the source files, and related information can be
found in Section 3 of this handout.

2 The Assignment

Perform the following tasks and write up answers to the questions. Describe the designs of
the neural networks you used for each problem, and why you chose the design. Turn in the
writeup along with files containing the modified code for each part.

1. Issue the following command in your home directory to obtain the training and test
set data for this assignment:

cp BASE/trainset/*.list .

2. The code you have been given is currently set up to learn to recognize the person with
userid glickman. By default, the code creates a network with an input for each pixel,
4 hidden units, and 1 output unit. The function call to bpnn create that appears in
the file facetrain.c establishes the dimensions of the neural network.

Modify this code to implement a “sunglasses” recognizer; i.e., train a neural net which,
when given an image as input, indicates whether the face in the image is wearing
sunglasses, or not.

You will still have an input for each pixel, and one output unit (sunglasses), but you
might need to vary the number of hidden units initialized bpnn create.

3. Train a network using the default learning parameter settings (learning rate 0.3, mo-
mentum 0.3) for 75 epochs, with the following command:

facetrain -n shades.net -t straightrnd train.list -1

straightrnd test1.list -2 straightrnd test2.list -e 75

facetrain’s arguments are described in Section 3.1.1, but a short description is in
order here. shades.net is the name of the network file which will be saved when
training is finished. straightrnd train.list, straightrnd test1.list, and

3



. . .input (pixels)

hidden

output

Figure 1: The default neural net has an input unit for each pixel, four hidden units, and one
output unit.

straightrnd test2.list are text files which specify the training set (70 examples)
and two test sets (34 and 52 examples), respectively.

This command creates and trains your net on a randomly chosen sample of 70 of the
156 “straight” images, and tests it on the remaining 34 and 52 randomly chosen images,
respectively. One way to think of this test strategy is that roughly 1

3
of the images

(straightrnd test2.list) have been held over for testing. The remaining 2
3

have
been used for a train and cross-validate strategy, in which 2

3
of these are being used for

as a training set (straightrnd train.list) and 1
3

are being used for the validation
set to decide when to halt training (straightrnd test1.list).

Are you confused? Program not working? PUT YOUR HANDS UP,
AND SLOWLY WALK AWAY FROM THE TERMINAL. DON’T MAKE
A SUDDEN MOVE. Read the whole document all the way through the
end, no skimming this time! Together with your other team members, di-
agram the structure of the code on a whiteboard. Look at contents of the
training list files. Now you are ready to restart work!

4. What code did you modify? What was the maximum classification accuracy achieved
on the training set? How many epochs did it take to reach this level? How about for
the validation set? The test set? Note that if you run it again on the same system
with the same parameters and input, you should get exactly the same results because,
by default, the code uses the same seed to the random number generator each time.
You will need to read Section 3.1.2 carefully in order to be able to interpret your
experiments and answer these questions.

5. Optional: The “straight” training and test files only include images of the face-front
pose. Teaching the neural network to work for all four poses could be more challenging.
Repeat the previous step using all poses, by specifying the “all” training and test file
sets:

4



facetrain -n shadesall.net -t all train.list -1

all test1.list -2 all test2.list -e 75

If performance is poor, try increasing the number of hidden units.

6. Now, implement a 1–of–20 face recognizer; i.e., implement a neural net that accepts
an image as input, and outputs the userid of the person. To do this, you will need
to implement a different output encoding (since you must now be able to distinguish
among 20 people). (Hint: leave learning rate and momentum at 0.3, and use 20 hidden
units.) You will need to modify the code as described below so that it outputs the
name associated with the output neuron with the highest output value.

7. As before, train the network, this time for 100 epochs:

facetrain -n face.net -t straighteven train.list -1

straighteven test1.list -2 straighteven test2.list -e 100

The difference between the straightrnd *.list and the straighteven *.list sets
is that while the former divides the images purely randomly among the training and
test sets, the latter ensures a relatively even distribution of each individual’s images
over the sets. Because we have only 7 or 8 “straight” images per individual, failure to
distribute them evenly would result in testing our network the most on those faces on
which it was trained the least.

8. Which parts of the code was it necessary to modify this time? How did you encode
the outputs? What was the maximum classification accuracy achieved on the training
set? How many epochs did it take to reach this level? How about for the validation
and test set?

9. Now let’s take a closer look at which images the net may have failed to classify:

facetrain -n face.net -T -1 straighteven test1.list

-2 straighteven test2.list

Do there seem to be any particular commonalities between the misclassified images?

10. Implement a pose recognizer; i.e., implement a neural net which, when given an image
as input, indicates whether the person in the image is looking straight ahead, up, to
the left, or to the right. You will also need to implement a different output encoding
for this task. (Hint: leave learning rate and momentum at 0.3, and use 6 hidden units).

11. Train the network for 100 epochs, this time on samples drawn from all of the images:

facetrain -n pose.net -t all train.list -1 all test1.list

-2 all test2.list -e 100

Note that you need to train on all images, not just the “straight” pose images. In this
case, 260 examples are in the training set, 140 examples are in test1, and 193 are in
test2.

5



12. How did you encode your outputs this time? What was the maximum classification
accuracy achieved on the training set? How many epochs did it take to reach this
level? How about for each test set?

13. Now, try taking a look at how backpropagation tuned the weights of the hidden units
with respect to each pixel. First type make hidtopgm to compile the utility on your
system. Then, to visualize the weights of hidden unit n, type:

hidtopgm pose.net image-filename 32 30 n

Invoking xv on the image image-filename should then display the range of weights, with
the lowest weights mapped to pixel values of zero, and the highest mapped to 255. If
the images just look like noise, try retraining using facetrain init0 (compile with
make facetrain init0), which initializes the hidden unit weights of a new network
to zero, rather than random values.

14. Do the hidden units seem to weight particular regions of the image greater than others?
Do particular hidden units seem to be tuned to different features of some sort?

15. Optional: Implement an expression recognizer; i.e., implement a neural net that, when
given an image as input, indicates whether the person in the image is neutral, happy,
sad, or angry. You will also need to implement a different output encoding for this
task. You will have to experiment to determine the number of hidden units. Use only
the “straighteven” training and test sets. You might need to use the full-resolution
images rather than the quarter-size images in order to capture enough detail of the
expressions. You can run on the full size images by using the training set lists:

straightevenHD train.list

straightevenHD test1.list

straightevenHD test2.list

In your report, describe what you tried and how well it worked in the end.

3 Documentation

The code for this assignment is broken into several modules:

• facetrain.c: the top-level program which uses all of the modules below to implement
an image classification system. You will need to modify this code to change network
sizes and learning parameters. The performance evaluation routines
performance on imagelist() and evaluate performance() are also in this module;
you will need to modify these for your face and expression recognizers.

• imagenet.c: interface routines for loading images into the input units of a network, and
setting up target vectors for training. You will need to modify the routine load target,
when implementing the face recognizer and the pose recognizer, to set up appropriate
target vectors for the output encodings you choose.

6



• backprop.c, backprop.h: the neural network package. Supports three-layer fully-
connected feedforward networks, using the backpropagation algorithm for weight tun-
ing. Provides high level routines for creating, training, and using networks. You will
not need to modify any code in this module to complete the assignment.

• pgmimage.c, pgmimage.h: the image package. Supports read/write of PGM image files
and pixel access/assignment. Provides an IMAGE data structure, and an IMAGELIST

data structure (an array of pointers to images; useful when handling many images).
You will not need to modify any code in this module to complete the as-
signment.

• hidtopgm.c: the hidden unit weight visualization utility. It’s not necessary modify
anything here, although it may be interesting to explore some of the numerous possible
alternate visualization schemes. You will not need to modify any code in this
module to complete the assignment.

Although you’ll only need to modify code in imagenet.c and facetrain.c, feel free to
modify anything you want in any of the files if it makes your life easier or if it allows you to
do a nifty experiment.

3.1 The top level package (facetrain.c)

3.1.1 Running facetrain

facetrain has several options which can be specified on the command line. This section
briefly describes how each option works. A very short summary of this information can be
obtained by running facetrain with no arguments.

-n <network file> - this option either loads an existing network file, or creates a new one
with the given name. At the end of training, the neural network will be saved to this
file.

-e <number of epochs> - this option specifies the number of training epochs which will
be run. If this option is not specified, the default is 100.

-T - for test-only mode (no training). Performance will be reported on each of the three
datasets specified, and those images misclassified will be listed, along with the corre-
sponding output unit levels.

-s <seed> - an integer which will be used as the seed for the random number generator.
The default seed is 102194 (guess what day it was when I wrote this document). This
allows you to reproduce experiments if necessary, by generating the same sequence
of random numbers. It also allows you to try a different set of random numbers by
changing the seed.

-S <number of epochs between saves> - this option specifies the number of epochs be-
tween saves. The default is 100, which means that if you train for 100 epochs (also the
default), the network is only saved when training is completed.

7



-t <training image list> - this option specifies a text file which contains a list of image
pathnames, one per line, that will be used for training. If this option is not specified, it
is assumed that no training will take place (epochs = 0), and the network will simply
be run on the test sets. In this case, the statistics for the training set will all be zeros.

-1 <test set 1 list> - this option specifies a text file which contains a list of image
pathnames, one per line, that will be used as a test set. If this option is not specified,
the statistics for test set 1 will all be zeros.

-2 <test set 2 list> - same as above, but for test set 2. The idea behind having two
test sets is that one can be used as part of the train/test paradigm, in which training
is stopped when performance on the test set begins to degrade. The other can then be
used as a “real” test of the resulting network.

3.1.2 Interpreting the output of facetrain

When you run facetrain, it will first read in all the data files and print a bunch of lines
regarding these operations. Once all the data is loaded, it will begin training. At this point,
the network’s training and test set performance is outlined in one line per epoch. For each
epoch, the following performance measures are output:

<epoch> <delta> <trainperf> <trainerr> <t1perf> <t1err> <t2perf> <t2err>

These values have the following meanings:

epoch is the number of the epoch just completed; it follows that a value of 0 means that
no training has yet been performed.

delta is the sum of all δ values on the hidden and output units as computed during
backprop, over all training examples for that epoch.

trainperf is the percentage of examples in the training set which were correctly classified.

trainerr is the average, over all training examples, of the error function 1
2

∑
(ti − oi)

2,
where ti is the target value for output unit i and oi is the actual output value for that
unit.

t1perf is the percentage of examples in test set 1 which were correctly classified.

t1err is the average, over all examples in test set 1, of the error function described above.

t2perf is the percentage of examples in test set 2 which were correctly classified.

t2err is the average, over all examples in test set 2, of the error function described above.

3.1.3 Procedures in facetrain.c

You will need to make several changes in this package for the face and expression recognizers,
as described below.

8



void backprop face(

IMAGELIST *trainlist, IMAGELIST *test1list, IMAGELIST *test2list,

int epochs, int savedelta,

char *netname,

int list errors)

This is main routine you will modify. It begins by reading in a neural net file, or
creating one if it does not exist. The line

net = bpnn create(imgsize, 4, 1);

creates a neural net with specified number of input units, hidden units, and output
units.

If the number of training epochs is greater than zero, then the network is trained. The
line

bpnn train(net, 0.3, 0.3, &out err, &hid err);

sets the learning rate (second parameter) and momentum (third parameter) both to
0.3. You may need to vary these parameters. (You might find it useful to change them
from constants to variables that can be set by new command line arguments.)

The accuracy of the neural network on the training set and two test sets is calculated
and printed before training and at the end of each epoch by calling the procedure
evaluate performance. Finally, the network is saved.

You will add statements at the end of this procedure for the face and expression
recognizer. For example, for the face recognizer, you need to print the name of person
corresponding to the output unit with the highest value for each test image. You will
also check whether the highest unit is indeed the correct one for the image. You can
implement these changes by making a copy of evaluate performance and modifying
it.

int evaluate performance(

BPNN *net,

double *err)

You will also need to modify this routine. It checks if the output of the network
matches the target for the currently loaded image. It returns a Boolean value (1 for
correct, 0 for incorrect), as well as the difference between the target and output values
(err). The default code handles a single output neuron. For the face and expression
recognizers, you will need to check all of the output neurons, in order to see if they are
all at or near (less than 0.5 distance) their target values. The returned err should be
sum of the errors (squared delta) for all of the output units.

3.2 The interface package (imagenet.c)

This package provides the interface routines for loading images into the input units of a
network, and setting up target vectors for training. You will need to modify the following

9



procedure to set up appropriate target vectors for the output encodings you choose for the
face and expression recognition.

void load target(

IMAGE *img,

BPNN *net)

img is an image that has been loaded. The routine checks the name of the file cor-
responding to the image, NAME(img), in order to determine the true label for the
image — for example, the person’s name, or whether they are wearing sunglasses, or
their expression. It then sets the target(s) of the output unit(s) to appropriate values,
TARGET HIGH or TARGET LOW, depending upon what you are trying to learn. The default
code establishes a target for a single output neuron that recognizes “glickman”.

3.3 The neural network package (backprop.c)

As mentioned earlier, this package implements three-layer fully-connected feedforward neural
networks, using a backpropagation weight tuning method. We begin with a brief description
of the data structure, a BPNN (BackPropNeuralNet).

All unit values and weight values are stored as doubles in a BPNN.
Given a BPNN *net, you can get the number of input, hidden, and output units with

net->input n, net->hidden n, and net->output n, respectively.
Units are all indexed from 1 to n, where n is the number of units in the layer. To get

the value of the kth unit in the input, hidden, or output layer, use net->input units[k],
net->hidden units[k], or net->output units[k], respectively.

The target vector is assumed to have the same number of values as the number of units
in the output layer, and it can be accessed via net->target. The kth target value can be
accessed by net->target[k].

To get the value of the weight connecting the ith input unit to the jth hidden unit, use
net->input weights[i][j]. To get the value of the weight connecting the jth hidden unit
to the kth output unit, use net->hidden weights[j][k].

The routines are as follows:

void bpnn initialize(seed)

int seed;

This routine initializes the neural network package. It should be called before any
other routines in the package are used. Currently, its sole purpose in life is to initialize
the random number generator with the input seed.

BPNN *bpnn create(n in, n hidden, n out)

int n in, n hidden, n out;

Creates a new network with n in input units, n hidden hidden units, and n output

output units. All weights in the network are randomly initialized to values in the range
[−1.0, 1.0]. Returns a pointer to the network structure. Returns NULL if the routine
fails.

10



void bpnn free(net)

BPNN *net;

Takes a pointer to a network, and frees all memory associated with the network.

void bpnn train(net, learning rate, momentum, erro, errh)

BPNN *net;

double learning rate, momentum;

double *erro, *errh;

Given a pointer to a network, runs one pass of the backpropagation algorithm. Assumes
that the input units and target layer have been properly set up. learning rate and
momentum are assumed to be values between 0.0 and 1.0. erro and errh are pointers
to doubles, which are set to the sum of the δ error values on the output units and
hidden units, respectively.

void bpnn feedforward(net)

BPNN *net;

Given a pointer to a network, runs the network on its current input values.

BPNN *bpnn read(filename)

char *filename;

Given a filename, allocates space for a network, initializes it with the weights stored
in the network file, and returns a pointer to this new BPNN. Returns NULL on failure.

void bpnn save(net, filename)

BPNN *net;

char *filename;

Given a pointer to a network and a filename, saves the network to that file.

3.4 The image package (pgmimage.c)

The image package provides a set of routines for manipulating PGM images. An image is a
rectangular grid of pixels; each pixel has an integer value ranging from 0 to 255. Images are
indexed by rows and columns; row 0 is the top row of the image, column 0 is the left column
of the image.

IMAGE *img open(filename)

char *filename;

Opens the image given by filename, loads it into a new IMAGE data structure, and
returns a pointer to this new structure. Returns NULL on failure.

IMAGE *img creat(filename, nrows, ncols)

char *filename;

int nrows, ncols;

11



Creates an image in memory, with the given filename, of dimensions nrows × ncols,
and returns a pointer to this image. All pixels are initialized to 0. Returns NULL on
failure.

int ROWS(img)

IMAGE *img;

Given a pointer to an image, returns the number of rows the image has.

int COLS(img)

IMAGE *img;

Given a pointer to an image, returns the number of columns the image has.

char *NAME(img)

IMAGE *img;

Given a pointer to an image, returns a pointer to its base filename (i.e., if the full file-
name is /usr/joe/stuff/foo.pgm, a pointer to the string foo.pgm will be returned).

int img getpixel(img, row, col)

IMAGE *img;

int row, col;

Given a pointer to an image and row/column coordinates, this routine returns the
value of the pixel at those coordinates in the image.

void img setpixel(img, row, col, value)

IMAGE *img;

int row, col, value;

Given a pointer to an image and row/column coordinates, and an integer value as-
sumed to be in the range [0, 255], this routine sets the pixel at those coordinates in the
image to the given value.

int img write(img, filename)

IMAGE *img;

char *filename;

Given a pointer to an image and a filename, writes the image to disk with the given
filename. Returns 1 on success, 0 on failure.

void img free(img)

IMAGE *img;

Given a pointer to an image, deallocates all of its associated memory.

IMAGELIST *imgl alloc()

Returns a pointer to a new IMAGELIST structure, which is really just an array of
pointers to images. Given an IMAGELIST *il, il->n is the number of images in the
list. il->list[k] is the pointer to the kth image in the list.

12



void imgl add(il, img)

IMAGELIST *il;

IMAGE *img;

Given a pointer to an imagelist and a pointer to an image, adds the image at the end
of the imagelist.

void imgl free(il)

IMAGELIST *il;

Given a pointer to an imagelist, frees it. Note that this does not free any images to
which the list points.

void imgl load images from textfile(il, filename)

IMAGELIST *il;

char *filename;

Takes a pointer to an imagelist and a filename. filename is assumed to specify a file
which is a list of pathnames of images, one to a line. Each image file in this list is
loaded into memory and added to the imagelist il.

3.5 The hidden unit visualization package (hidtopgm)

hidtopgm takes the following fixed set of arguments:
hidtopgm net-file image-file x y n

net-file is the file containing the network in which the hidden unit weights are to be found.

image-file is the file to which the derived image will be output.

x and y are the dimensions in pixels of the image on which the network was trained.

n is the number of the target hidden unit. n may range from 1 to the total number of
hidden units in the network.

3.6 The output unit visualization package (outtopgm)

outtopgm takes the following fixed set of arguments:
outtopgm net-file image-file x y n

This is the same as hidtopgm, for output units instead of input units. Be sure you specify
x to be 1 plus the number of hidden units, so that you get to see the weight w0 as
well as weights associated with the hidden units. For example, to see the weights for
output number 2 of a network containing 3 hidden units, do this:

outtopgm expression.net expression-out2.pgm 4 1 2

net-file is the file containing the network in which the hidden unit weights are to be found.

image-file is the file to which the derived image will be output.

13



x and y are the dimensions of the hidden units, where x is always 1 + the number of hidden
units specified for the network, and y is always 1.

n is the number of the target output unit. n may range from 1 to the total number of
output units for the network.

3.7 Tips

Although you do not have to modify the image or network packages, you will need to know
a little bit about the routines and data structures in them, so that you can easily implement
new output encodings for your networks. You should look at imagenet.c, facetrain.c,
and facerec.c to see how the routines are actually used.

In fact, it is probably a good idea to look over facetrain.c first, to see how the training
process works. You will notice that load target() from imagenet.c is called to set up
the target vector for training. You will also notice the routines which evaluate performance
and compute error statistics, performance on imagelist() and evaluate performance().
The first routine iterates through a set of images, computing the average error on these
images, and the second routine computes the error and accuracy on a single image.

Finally, the point of this assignment is for you to obtain first-hand experience in working
with neural networks; it is not intended as an exercise in C hacking. An effort has been
made to keep the image package and neural network package as simple as possible. If you
need clarifications about how the routines work, don’t hesitate to ask.

If you read all the way to the end of this document before starting to modify the code,
congratulations! You are on the road to success!

14


