DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
V olume $5, 1997.

Finding Hard Instances of the Satisfiability Problem:
A Survey

Stephen A. Cook and David G. Mitchell

ABSTRACT. Finding sets of hard instances of propositional satisfiability is of
interest for understanding the complexity of SAT, and for experimentally eval-
uating SAT algorithms. In discussing this we consider the performance of the
most popular SAT algorithms on random problems, the theory of average case
complexity, the threshold phenomenon, known lower bounds for certain classes
of algorithms, and the problem of generating hard instances with solutions.

1. Introduction

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there 1s an assignment of truth values to its variables for
which that formula evaluates to true. By SAT we mean the problem of proposi-
tional satisfiability for formulas in conjunctive normal form (CNF). Although SAT
1s apparently intractable in the worst case, many instances of the problem are eas-
ily solved in practice. Finding ways to generate sets of hard instances i1s important
for understanding the complexity of the problem, and for providing challenging
benchmarks for experimental evaluation of algorithms.

The first, and one of the simplest, of the many problems which have been shown
to be NP-complete, SAT holds a central position in the study of computational
complexity. As the dual of propositional theorem proving, it is amenable to the
proof of non-trivial lower bounds based on lengths of proofs. Instances which have
only long proofs in certain proof systems are intractable for corresponding classes
of algorithms. On the other hand, many practical problems are NP-hard and
may be transformed efficiently to SAT, or have component problems which can be.
Thus, a good SAT algorithm would likely have considerable utility. Since it seems
improbable that a polynomial time algorithm will be found, “good” might mean
performing well on average, or with high probability, or on a class of “interesting”
inputs. The hard inputs for a class of algorithms characterize the limitations of
those algorithms, and point up where additional research is needed.

1991 Mathematics Subject Classification. Primary 68Q25; Secondary 03B05, 03F20.

The first author was supported by the Natural Sciences and Engineering Research Council
of Canada and the Information Technology Research Centre. The second author was supported
by the Natural Sciences and Engineering Research Council of Canada.

©0000 American Mathematical Society
1052-1798/00 $1.00 4 $.25 per page

2 STEPHEN A. COOK AND DAVID G. MITCHELL

The remainder of the paper is organized as follows. In section 1.1 we provide
definitions and terminology. Since the notion of hard instances must usually be
in terms of particular algorithms, section 2 considers some of the most popular
and successful SAT algorithms. Section 3 examines the average case performance
of these algorithms, and properties of randomly generated formulas, including the
“threshold phenomenon”. We follow this with a discussion of the theory of average
case complexity in section 4. Lower bounds for certain classes of algorithms can be
shown based on sets of unsatisfiable instances, whereas finding sets of hard satis-
fiable instances is a challenging problem. These issues are discussed in sections b
and 6, respectively.

1.1. Terminology and Definitions. Let U = {uj,us,... ,u,} be a set of
n boolean variables. A (partial) truth assignment for U is a (partial) function
T : U — {true,false}. Corresponding to each variable u are two literals, u and
—u. A literal u (resp. —w) is true under 7 iff 7 (u) = true (resp. 7 (u) = false).
We call a set of literals a clause, and a set or sequence (tuple) of clauses a formula.
We say variable u 1s mentioned in a clause C'if u € C' or —u € C'. If ¢ is a formula,
then vars(¢) is the set of variables mentioned in ¢.

Let ¢ be a formula, U = vars(¢), and C a clause in ¢. We interpret ¢ as a
formula of the propositional calculus in conjunctive normal form (CNF), so that a
truth assignment 7 for U satisfies C' iff at least one literal u € C' is true under 7T,
and 7T satisfies ¢ iff it satisfies every clause in ¢. For brevity we sometimes call a
satisfying assignment for ¢ a solution. We will write ¢(u) for the result of setting a
literal u to true and simplifying. That is, ¢(u) =%/ {C' | C € ¢, {u,~u} N C = 0}
U{C\~u|C € ¢,—~uec C}.

The restriction of SAT to instances where all clauses have length & is denoted
k—=SAT. Of special interest are 2-SAT and 3-SAT: 3 is the smallest value of &
for which k=SAT is NP-complete [Coo71], while 2-SAT is solvable in linear time
[EIST6, APTT79]. Horn—SAT is the restriction to instances where each clause has
at most one unnegated variable. Horn=SAT is solvable in linear time [DG84], as are
a number of generalizations such as Re-nameable Horn—SAT, the class of formulas
that can be converted to Horn merely by renaming (reversing the sign) of some
variables [Lew78, Asp80], and Generalized Horn-SAT, an extension of Horn—-SAT
based on a nesting property [CH91, CCH™" 90] (see also [CC92, SAFS95]).

In what follows, we will use n for the number of variables in a formula, m
for the number of clauses and k for the clause “length” (e.g., number of literals).
When discussing distributions of formulas, n, m and k will refer to parameters to
a distribution, rather than particular formulas, and we trust meaning will be clear
from context.

2. Algorithms

A procedure for SAT is sound if every input on which it returns yes is satisfiable,
and complete if in addition it returns yes (in finite time) on every satisfiable input.
In practice, we often need a procedure to return a solution when the input is a
satisfiable formula — the search or function version of SAT — and the most popular
algorithms do return solutions.

2.1. Complete Methods. Since resolution is refutation complete, a simple
method for testing satisfiability is to generate all possible resolvents, and then check

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 3

if the empty clause has been generated. Davis and Putnam [DP60] introduced a
method (hereafter called DP60), in which variables are eliminated one-by-one from
the formula by, at each step, generating all possible resolvents based on a chosen
variable and then deleting all clauses mentioning that variable. Each step generates
a sub-problem with one fewer variable, but possibly quadratically more clauses.
This is easily seen to be a special case of regular resolution.

DP60 employs two heuristics, the pure literal rule and the unit clause rule,
which together state: If some variable occurs in the current formula in a clause
of length 1, or occurs only negated, or occurs only unnegated, then choose such a
variable to eliminate next. This 1s effective because the remaining formula must be
smaller than the original. It is not hard to see that DP60 may generate an expo-
nential number of clauses in the general case, but at most quadratically many on
any instance of 2-SAT. Careful implementation of the unit clause rule results in
linear-time handling of (Generalized/Re-nameable) Horn formulas which are unsat-
isfiable, but not necessarily those which are satisfiable. Indeed, DP60 seems ill-suited
for use on satisfiable formulas, since many resolvents may be generated even when
a satisfying assignment can be found easily by other methods.

Davis, Logemann and Loveland [DLL62] found that in implementation DP80
generated an unmanageable number of resolvent clauses, and replaced the “elim-
ination rule” with a “splitting rule”. In this version, selecting a variable leads to
two smaller sub-problems — one for each truth value — instead of a single, possibly
large, sub-problem. The resulting procedure (which we will call DPLL) is a back-
tracking depth-first search through (partial) truth assignments, augmented by the
unit clause and pure literal heuristics;

Procedure DPLL(CNF formula: ¢)
if ¢ is empty return yes.
else if there is an empty clause in ¢ return no.
else if there is a pure literal u in ¢ return DPLL(¢(u)).
else if there is a unit clause {u} in ¢ return DPLL(¢(u)).
else
* select a variable v mentioned in ¢.
if DPLL(¢(v))=yes then
return yes.
else
return DPLL(¢(—v)).
end
end

In the literature, both DP60 and DPLL have often been called “the Davis-Putnam
Procedure”. However, the two methods perform quite differently on some problems,
and are incomparable with respect to complexity analysis [Gol79, DR94].

The variable selection rule (*) may be as simple as choosing the first remaining
variable in ¢, or it may be quite sophisticated. In the original version the rule
used 1is; pick a variable occurring in the first clause of minimal length. The most
popular rules currently are variants on ideas suggested in [DLL62, Gol79], and
described by Pretolani [Pre93] as Moms variable selection strategy: branch on a
variable (or literal) with Maximum number of occurrences in minimum size clauses.
A wide range of heuristics can be found in the literature. In particular, Dubois and

4 STEPHEN A. COOK AND DAVID G. MITCHELL

colleagues [DABC93], Crawford and Auton [CA96], and Freeman [Fre94], have
employed careful evaluation of heuristics in developing extremely fast implementa-
tions.

Variants of DPLL work quite well in practice, and are probably the most widely
known and used SAT testing methods. DPLL also appears to be close to the best we
currently know how to do in terms of worst-case performance. The worst case time
for this procedure on 3-SAT is O(2°:752") and a very small modification improves it
to O(2°-94") [VanG96]. The current best bound on the time to decide membership
in 3-SAT is O(2°-582") [Sch96], using a set of complex refinements to DPLL which
seem unlikely to be useful in practice. Complex methods to reduce the size of the
search tree often do not lead to corresponding reductions in actual execution time,
because of the additional work needed at each node.

Since DPLL may find a solution and exit early, it seems much better suited
to use on satisfiable instances than DP60. As in the case of DP60, with careful
implementation of the unit clause rule, DPLL handles unsatisfiable (Generalized /Re-
nameable) Horn formulas well, but without enhancement it performs sub-optimally
on 2-SAT and satisfiable Horn formulas.

We may call the backtrack tree of DPLL on an unsatisfiable formula a “DPLL
proof”. Corresponding to every DPLL proof is a tree resolution refutation of size no
larger than the DPLL proof tree [Gol79, Chapter 3] (sometimes there are also much
smaller tree refutations).

Many other complete methods have been devised, including for example Iwama’s
method for enumerating sets of non-solutions [Iwa89], Larrabee’s method of trying
to extend solutions to the 2-CNF subset of a general formula [Lar92], and Gallo
and Urbani’s use of Horn relaxations [GU89]. While some of these perform well on
some classes of problems, they have not been as widely studied or tested as DPLL.

2.2. Incomplete Methods. Incomplete methods can be thought of as model
finders: they cannot prove unsatisfiability, but are often much better than the
known complete methods at finding satisfying assignments when they exist. Typ-
ically these methods employ some notion of randomized local search. That this
was a promising approach for SAT is a relatively recent discovery, made indepen-
dently by Selman et al [SLM92] and Gu [Gu92]. Selman’s algorithm GSAT was
inspired by a very closely related technique developed by Minton and his colleagues
for Constraint Satisfaction Problems [MIJPL90]. An intriguing contribution was
the report by Sosic and Gu [Gu89, SG90] that this approach yielded very fast so-
lutions to n-queens problems, which had previously been popular as a benchmark
(known explicit solutions not-with-standing).

In local search, a cost function is defined over truth assignments such that global
minima correspond to satisfying assignments. One guesses a truth assignment as a
potential solution, and then tries to improve that guess incrementally by checking
truth assignments within a neighborhood of the current one for one with lower cost.
In almost all work to date, the initial guess is a random truth assignment, the cost
function is the number of clauses not satisfied by the current truth assignment, and
the neighborhood is the set of truth assignments at Hamming distance one from
the current guess.

The most widely studied of these algorithms is Selman’s GSAT [SLM92]. At
each step of this algorithm the truth assignment of one variable is “flipped”. The
variable selected is the one which leads to the best neighboring truth assignment.

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 5

Ties are broken randomly. A flip is made even if the best flip increases the number
of unsatisfied clauses. This differs from the classical notion of local search, in which
an improvement is made at every step, and search is terminated when no improving
step is available. If restricted to improving steps, GSAT performs very poorly, and
in practice steps which make no change to the score dominate the search, except
during an short initial descent phase [SK93].

One’s intuition might be that such an algorithm will always get stuck in local
minima, and the surprise of it’s success is that this happens much less often than
one might expect. However, it does happen and the procedure may need to be
executed many times from different starting points to solve hard instances. Since
for incomplete methods there is no a prior: termination condition in the event of
not finding a solution, GSAT is parameterized by two bounds; “max-flips” to limit
the number flips to do before re-starting with a new initial guess, and “max-tries”
to terminate altogether. Gu, in the development of his SAT1 family of local search
based algorithms, also employed a variety of techniques for escaping local minima,
including backtracking and random flips as well as restarts [Gu93]. Determining
a general restart criterion would appear to be a tricky problem (see for example
[GW95, HK93]). However it seems that for some related algorithms, which we
discuss next, re-starting is not necessary.

In a similar approach to model finding, which we will call iterative repair,
unsatisfied clauses are viewed as “symptoms” of a “flaw” in the truth assignment
to be “repaired”: If a formula is satisfiable, then any truth assignment which does
not satisfy some clause must be wrong on at least one variable mentioned in that
clause. This approach is distinguished from from local search in that every iterative
repair step 1s directly addressed to a flaw, but a step may make the natural cost
functions arbitrarily worse. A generic iterative repair algorithm is,

Procedure IR(CNF formula: ¢)
Guess a truth assignment 7.
while 7 does not satisfy ¢.
if time or iteration limit exceeded then return no.
Select a clause C' € ¢ not satisfied by 7.
Modify T to satisfy C'.
end while
return yes.
end IR

The simplest version of iterative repair is the Random Walk algorithm, which
repeatedly selects a clause at random from those currently not satisfied, and then
flips one of the variables in that clause, chosen at random. In the case of sat-
isfiable instances of 2-SAT, Random Walk (indeed any reasonable iterative repair
algorithm) may be analyzed as a gambler’s ruin, and shown to solve such instances
in O(n?) time on average [Pap91]. Although Random Walk will always eventually
solve any satisfiable CNF formula, it is not hard to demonstrate 3—CNF examples
with exponential expected time [Pap94], and in experimentation the method fails
badly on random 3-SAT.

Selman, Kautz and Cohen [SKC94], found that a probabilistically greedy ver-
sion of Random Walk performed better than GSAT on most types of problems tested.
On each iteration this algorithm, called WalkSAT, selects an unsatisfied clause at

6 STEPHEN A. COOK AND DAVID G. MITCHELL

random, and then tosses a coin to determine if the variable to be flipped will be
chosen randomly from this clause, or will be the variable in this clause that leads
to the greatest number of satisfied clauses when flipped. Another version that was
found to work very well tosses a coin at each iteration to decide between taking a
Random Walk step or a GSAT step. In both algorithms, the case of flipping a lit-
eral non-greedily serves to prevent getting stuck in local optima, so that restarting
becomes less important.

Viewed schematically, these procedures bear considerable resemblance to simu-
lated annealing (SA) [JAMS91], and suitably tuned versions of SA do in fact per-
form comparably with the algorithms just described [Sp93, BAHT94, SKC94].
The basic SA algorithm for SAT begins with an initial random truth assignment,
and repeats the following step; Pick a random variable, and compute §, the change
in the number of un-satisfied clauses when the variable is flipped. If § < 0 make the
flip, otherwise make the flip with probability e=%/T where T is the temperature, and
is usually a decreasing function of the number of steps taken. The low-probability
flips which decrease the number of satisfied clauses serve as a mechanism to escape
local minima.

Randomized model finding algorithms have been the subject of considerable
recent study. While many variants do not work well, a number of versions perform
much better than DPLL and other complete methods on almost all benchmark prob-
lems that have been tested. However, they are only useful in applications where the
incompleteness is an acceptable trade-off for speed at model finding. Further, each
of them is subject to defeat by relatively easily constructed examples — although
satisfiable formulas which are hard both for the known deterministic algorithms
and the model finding methods appear not to be common.

Almost no progress has been made in the analysis of randomized model-finding
algorithms for SAT. As mentioned above, all iterative repair methods work in
polynomial expected time for satisfiable instances of 2-SAT and (via a simple re-
writing trick), Re-nameable-Horn—SAT. These problems, however, have linear time
deterministic algorithms. Koutsoupias and Papadimitriou [KP92] proved for a
version of randomized 3-SAT that any local search algorithm will almost always
find solutions to satisfiable instances with at least ©(n?) clauses, however random
formulas with more than a linear number of clauses are almost always unsatisfiable.

Other incomplete algorithms include use of standard mathematical program-
ming and numerical optimization methods. Experiments have been reported, for ex-
ample, using branch-and-bound, cutting planes, and interior point methods [Hoo88,
HF90, JW90, KKRR90]. Although many experimenters have done SAT test-
ing with mathematical programming methods, most published reports have used
problems which are quite easy for a good implementation of DPLL [ML96], so the
effectiveness of these approaches 1s not well established in the literature.

3. Average-Case Performance

The theory of NP-completeness 1s based on worst-case complexity. The fact
that 3-SAT is NP-complete implies, assuming P # NP, merely that any algorithm
for 3-SAT must take an infeasible amount of time for infinitely many inputs. To
explain the behavior of algorithms in practice, the theory of average-case complexity
is more appropriate. For this we need to supply a probability distribution on
formulas for each input length. Two families of “random formulas” have been the

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 7

subject of significant study, one based on fixed clause lengths and the other based on
random clause lengths. Formula distributions may be used in analyzing algorithms,
in empirically evaluating algorithms, or as a subject in problem complexity.

The first average case analysis of SAT of which we are aware was carried out by
Goldberg [Gol79] on random clause length formulas. Formulas from the random
clause length (or “fixed density”) model are constructed in the following way: For
each of the m clauses, include each of the 2n literals with probability p (where p and
m may be functions of n). It follows from Goldberg’s work that, for any constant
value of p, DPLL solves these formulas in time O(mn?) on average. This first positive
result was put in perspective by Franco and Paull [FP83], who showed that it was
a consequence of a favorable choice of distribution, rather than favorable properties
of DPLL: A constant number of guesses of random truth assignments will find one
that satisfies an instance from this family with probability tending to 1 as n grows.
(More recently it has been shown that DP60 has linear time average performance
on these same formulas [HTL92].)

Numerous further analyses of these formula distributions have been published,
employing a variety of algorithms which take advantage of different properties which
hold in different areas of the parameter space. Deterministic algorithms are now
known which solve instances of this family in polynomial average time for all but
a vanishingly small part of the parameter space. The formulas not yet known to
be solvable efficiently on average occur, roughly, when the expected clause length
is a little less than In(m). See the study by Franco and Swaminathan [FW97]
for details. See also [Pur90, Fra86] for earlier work. It is worth noting that the
algorithms involved are quite simple, and easily implemented. For most practical
purposes, then, this family of formula distribution must be regarded as easy on
average, and not a likely source of hard instances. Experimental study confirms
this, as we discuss below.

Franco also found that the fixed-clause length formulas took exponential time
on average for DPLL when finding all solutions, and suggested this might be a
more interesting distribution for study [FP83]. Fixed-clause-length formulas are
generated by selecting clauses uniformly at random from the set of all possible (non-
trivial) clauses of a given length. We call such sets random k=SAT. The empirical
performance of a version of DPLL on random 3-SAT was investigated in [MSL92]
(see Figure 1). When ¢ is small, say less than 3, most instances are are very quickly
solved. When c is large, say more than 6, instances are harder than those at small
ratios, but only moderately. In the region between these ratios average difficulty
i1s dramatically greater. Also between these ratios, the probability of satisfiability
shifts smoothly from near 1 to near 0 (as independently reported earlier in [SD89]).
It is intriguing that the peak in difficulty occurs near the ratio where about half of
the formulas are satisfiable — especially since this is the same region that appears
hardest to analyze. The same pattern of hardness was found in [LT92], using a
substantially different algorithm, and we have conjectured that this general pattern
will hold, qualitatively, for all reasonable complete methods. The same pattern is
also found for larger values of k, but with the transition at higher ratios, and the
peak difficulty for DPLL much greater [ML96].

Random clause length formulas have also been studied empirically, (and until
recently were the most popular in reported experiments). It is readily apparent
that most of these formulas are easy, because they often contain empty clauses,
unit clauses and trivial clauses. Thus, experimenters shifted to a model where these

8 STEPHEN A. COOK AND DAVID G. MITCHELL

5000 T T T T T

Median DPLL calls, 50-var 3-SAT

4000

3000

2000

:/J__;;Q

1000

0 | | | |

Proportion Satisfiable, 50-var 3-SAT
0.75 .

—_

Prob. 0bF -~ = A\~~~ —— — =~~~ -~ — — — -~

0.25 _

0 1 1 1 _ 1 1
2 3 4) 6 7 8

Ratio of Clauses to Variables (m/n)

FIGURE 1. Random 3-SAT: DPLL performance and probability of
being satisfiable.

three clause types are excluded. In [MSL92, ML96], the performance of DPLL on
these modified formulas was investigated. When p is made a function of n so that
expected clause length remains constant as n is increased, these formulas exhibit the
same easy-hard-easy pattern, and the same satisfiable-to-unsatisfiable transition, as
the random 3-SAT formulas (as was also observed in [HF90]). However, the peak
in difficulty at the transition region is much less dramatic with these formulas, and
they are very much easier to test than similar sized fixed-clause length formulas.
Moreover, it was found that most experiments in the literature had been done
at clause-to-variable ratios which were in the easy region, and thus are not very
informative about the quality of the algorithms tested. In some cases, formulas
with thousands of variables and tens of thousands of clauses can be consistently
solved with no more than two or three backtracks each.

Gent and Walsh [GW94] investigated rare instances to the left of the “hard
region” which appear extremely hard because of excessive run times for DPLL. These
appear in both random clause and fixed clause formula familiesin the “easy” region,
where most instances are trivial to show satisfiable. However, such instances seem
to be amenable to attack by one or more existing enhancements to backtracking
[SK96, CA96, BS96].

Thus it appears that the hard formulasin the transition region for random k-=SAT
are the most useful random formulas of the kind we have so far discussed for eval-
uating the performance of algorithms. Recently Bayardo and Schrag [BS96] have

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 9

described “literal-regular 3-SAT” instances, which are like random 3-SAT instances,
except the number of occurrences of each literal in an instance 1s forced to be the
same. Their experiments indicate that such distributions still exhibit a transition
region for the clause/variable ratio, but now shifted to about 3.6 from 4.3, and their
random instances in the transition region are significantly harder to test (for DPLL)
than are standard random 3-SAT formulas in the transition region.

3.1. The Threshold Conjecture. Experimentally, the probability of an in-
stance of random 3-SAT being satisfiable shifts with the ratio of clauses-to-variables,
from being almost 1 with ratios much below 4 to being almost 0 at ratios much
above 5. The range of ratios over which this transition occurs becomes smaller as
n i1s increased. A similar pattern holds for other clause lengths, at different ra-
tios. This, together with the common occurrence of threshold phenomena in other
random combinatorial structures such as random graphs, suggests the following
threshold conjecture: For each k, there is some ¢* such that for each fixed value of
e < ¢, random k—SAT with n variables and en clauses is satisfiable with probability
tending to 1 as n — 0o, and when ¢ > ¢*, unsatisfiable with probability tending to
1. For the case of random 2-SAT, the conjecture has been shown true, and ¢* = 1
[Goe92, CR92].

In the case of & = 3, the current bounds on the location of this threshold, if
it exists, are 3.003 < ¢* < 4.598. This lower bound was given by Frieze and Suen
[FS92] who, extending previous work by Chao and Franco [CF90], and Broder,
Frieze and Upfal [BFU93], gave an algorithm GUCB which, with probability tend-
ing to 1, finds a satisfying truth assignment (in polynomial time) for instances of
random 3-SAT whenever ¢ < 3.003. Suitable variants of DPLL succeed in finding so-
lutions whenever GUCB does, and in the same time, and therefore will almost always
find solutions to these instances in polynomial time (although polynomial average
time does not necessarily follow).

The upper bound is due to Kirousis, Kranakas and Krizanc [KKK96], which
improves previous bounds of 4.64 by Dubois and Boufkhad [DB96], 4.78 by Kamath
et al [KMPS94], and 5.19 reported by several authors. The easy 5.19 bound comes
from observing that a fixed assignment ¢ satisfies a random 3-literal clause with
probability % and hence ¢ satisfies a random instance of 3-SAT with probability
(g)m. The expected number of assignments satisfying the random instance is thus
2”(%)6”, and this (and hence the probability that the instance is satisfiable) tends
to 0 as n — oo for ¢ > log% 2 = 5.191.... (The argument also shows that for
¢ < 5.19 the expected number of assignments satisfying a random instance grows
exponentially with n. This may help explain the success of local search methods
on satisfiable instances.)

The improved upper bounds given in [DB96, KKK96] are based on the ob-
servation that if an instance ¢ is satisfiable, then some assignment ¢ mazimally
satisfies ¢, meaning ¢ satisfies ¢, but flipping the value of ¢ on any single variable
from false to true falsifies ¢. Dubois and Boufkhad obtained the bound ¢* < 4.642
by estimating the expected number of maximally satisfying assignments, which is
significantly smaller than the number of satisfying assignments. Kirousis ef al in-
dependently developed the same method, and by considering double flips obtained
the bound ¢* < 4.598 stated above.

10 STEPHEN A. COOK AND DAVID G. MITCHELL

Curiously, direct arguments such as this have so far failed to give interesting
lower bounds for the threshold. The known lower bounds result from analyzing
specific algorithms, as explained above.

Attempts have also been made to construct a quantitative model of the tran-
sition region based on empirical data. This also appears quite challenging (see
[SK96, CA96]).

3.2. WalkSAT performance near the threshold. Random instances ap-
pear to be hardest when generated near the threshold ratio. DPLL and its variations
are hopelessly slow on many instances of random 3-SAT at this ratio when n is much
larger than 400. However, Selman et al [SKC94] found that WalkSAT solves most
of the satisfiable cases for much larger n. With n = 2000 variables, the best cur-
rent estimate of the ratio at which 50% of formulas will be satisfiable is about
c=m/n =4.24, or m = 8480 clauses. WalkSAT solved about 50% of the formulas
they generated at this ratio, in about one hour per formula on average. This sug-
gests that WalkSAT found satisfying assignments for most of the satisfiable instances
attempted in this difficult region, which is a remarkable performance. Although it
no doubt failed on some satisfiable instances, we know of no other procedure that
would succeed.

4. Average-Case Completeness

The theory of NP-completeness tells us that 3-SAT is as hard as any problem in
NP, in the sense of worst-case complexity. It 1s reasonable to ask for a comparable
result in average-case complexity. Thus we want a distribution on 3—-SAT instances
for each length [which makes the problem complete in some average-case sense.
The theory of average-case completeness tells us that such distributions exist, but
there 1s evidence that none of them is “natural”.

This theory was initiated by Levin [Lev86] and extensively developed by others
(see [BCGLI2] and [Gur9l]). Traditionally it requires specification of a global
distribution to all instances of a problem D. Here we adapt the theory to follow
the tradition in average-case analysis of algorithms, where one need only specify a
family of local distributions, 1.e. for each [a distribution g; on instances of length
[(see [MS95]).

If D is a decision problem, then IJ; denotes the restriction of D to inputs
of length {. A randomized decision problem is a sequence (Dj,), where D is a
decision problem and g; is a probability distribution on instances of ;. Such a
problem is in AvP (average P) iff some deterministic algorithm solves it in time
polynomial on average in the following technical sense: there exist ¢ > 0 and a
bound B such that for all {

|z =l

where T'(x) is the time required by the algorithm on instance z. Tt follows easily
that for any D € P and any sequence (), the sequence (Dy, y;) is in AvP.
DistNP is the class of randomized decision problems (Dy, 1), where D eNP,
and (g is uniformly polytime computable.
Completeness for DistNP requires a suitable notion of reduction. We say
(Dy,) reduces via f to (DL,) if; 1) © € D < f(z) € D' for all D-instances
z, and 2) f does not map any set of instances with significant g;-probability into

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 11

an instance with very small p/, probability. One way to formalize condition 2) is:
For every | and every set Y of D;-instances which are all mapped by f to the same
Dy,-instance y, the ratio p(Y)/pl,(y) is bounded by ¢({), for some polynomial ¢.
We say that the reduction 1s polytime if f is computable in polytime.

Notice that DistNP does not correspond to NP in the same sense that AvP
corresponds to P, since a problem in DistINP is not necessarily allowed to be in
“average NP”, but must be in NP itself. The notion AvINP of average NP has
been defined, and Wang and Belanger [WB93] proved that any problem complete
for DistINP is also complete for the larger class AvINP, provided that more general
“polytime on average” reductions are allowed, as opposed to the strict polytime
reductions defined above.

Levin found a natural distribution for which the tiling problem is complete for
DistNP with respect to polytime reductions. Thus if tiling with this distribution
is in AvP, then all of DistNP (and in fact AvINP) is in AvP. A few other such
natural examples have been found ([Gur91]), but very few compared to the vast
number of NP-complete problems known. SAT is not among the examples, as we
now explain.

Makowsky and Sharell [MS95] define the class of negation-symmetric distribu-
tions on SAT or k=SAT to be all those with the following property: If an instance I’
results from an instance I by replacing a particular literal with its negation through-
out, then I and I’ have equal probability. This includes all the random formulas we
have discussed here, and probably all those to be found in the literature. Extending
results of Gurevich [Gur91] they showed that provided DEXP#NEXP (a slightly
stronger assumption than PZNP, but nonetheless expected to be true) k=SAT is
not DistNP-complete under deterministic reductions for any of these distributions.

On the other hand, 3-SAT is NP-complete, and hence every NP problem,
including the tiling problem, is reducible to it via some deterministic polytime
reduction. In fact, the reduction from tiling to 3-SAT can be made one-one with
a polytime inverse, so this reduction applied to the distribution family making
tiling Dist NP-complete will induce a distribution family making 3-SAT DistNP-
complete. However this induced distribution will not be natural in any sense.

Polytime and average polytime reductions are deterministic reductions. A no-
tion of randomizing reduction has been defined, and examples given which are com-
plete for Dist NP with respect to these reductions but (assuming DEXP#NEXP)
not with respect to deterministic reductions [VL88, Gur91l]. Makowsky and
Sharell ([MS95], p90) suspect that their incompleteness result is due to the restric-
tion to deterministic reductions. Thus a major open problem is to find a natural
distribution for which SAT is DistNP-complete under randomizing reductions.

5. Lower Bounds

Assuming P # NP no correct algorithm for SAT can operate in polytime, and
assuming AvP # AvNP no correct algorithm for SAT with a complete distribution
family can operate in average polytime. Without making such assumptions, the
best we can hope for with current techniques is lower bound proofs which apply to
specific algorithms. In fact, no interesting unconditional lower bounds are known on
the performance of the incomplete methods (model finders) described in section 2.2.
However strong lower bounds are known on the performance of specific complete
methods, but these only apply to their performance on unsatisfiable instances, and

12 STEPHEN A. COOK AND DAVID G. MITCHELL

result from known lower bounds on the lengths of proofs for specific propositional
proof systems.

The computation of either DP60 or DPLL on an unsatisfiable input instance
gives rise to a regular resolution proof for that instance whose number of lines is
bounded by the number of steps in the computation. Hence the exponential lower
bound on regular resolution proofs [Tse70, Gal77, BA8O0] gives rise to worst-case
exponential lower bounds on the time required for both DP60 and DPLL, and the
exponential lower bounds for general resolution [Hak85, Urq87] show that no
smarter use of resolution will help.

From our point of view, the strongest lower bound for proof systems is due
to Chvatal and Szemeredi [CS88], since their bound yields an exponential lower
bound on the average-case performance of DP60 and DPLL. They show that for each
fixed constant e there is ¢ > 0 so that for random 3-SAT with m = en clauses, the
probability that there exists a resolution refutation of size less than 2 tends to 0 as
n — oo. An immediate corollary is that DP60 and DPLL take exponential time with
high probability on random 3-SAT when ¢ > 4.598, since random instances are then
very likely unsatisfiable (see section 3.1). Notice however that if ¢ is not a constant
and exceeds n? then sub-linear length proofs almost surely exist [Fu95, MS95].

The experimental finding that random 3-SAT with large ¢ is easy is not in
conflict with the exponential lower bound for large (constant) ratios, but only shows
that at a given n these are much easier than formulas in the transition region.
Crawford and Auton studied the empirical scaling behavior of their implementation
of a very refined version of DPLL, and found that the average solution cost grew
roughly as 27/195 near the transition region, and something like 27/58 at higher
ratios [CA96].

A slightly stronger proof system than resolution is the cutting plane system.
Some work has been done using cutting planes in a SAT tester, for example [Hoo88].
Recently, exponential worst-case lower bounds have also been given for cutting plane
proofs [Pud96], but so far nothing comparable to the average-case resolution lower
bound of Chvatal and Szemeredi has been shown.

Exponential lower bounds have not been shown for some more powerful proof
systems, such as Frege systems and extended Frege systems. A lower bound for
extended Frege systems would yield a similar lower bound for any complete SAT
tester whose correctness can be proved using feasibly constructive methods [Coo75,
Kra95].

6. Hard Satisfiable Instances

As we mentioned, the known unconditional lower bounds apply only to hard
unsatisfiable instances, and furthermore existing model finders perform remarkably
well on satisfiable instances even near the difficult threshold ratio on random 3-SAT
(see section 3.2). Tt seems that the problem of generating random hard satisfiable
instances is related to a traditional problem in cryptography theory. More precisely,
Russell Impagliazzo has pointed out that generating hard solved instances of 3-SAT
is equivalent to computing a one-way function, which in turn is equivalent to gen-
erating pseudo-random numbers and private key cryptography [ILL89, Luby96].
(Tt may be easier to generate hard satisfiable instances than hard solved instances,
but we have no insight on this.)

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 13

The problem of generating hard solved instances can be explained as follows:
Find a polytime function h which takes a string r (representing random bits) to a
pair h(r) = (t(r), #(r)), where the assignment ¢(r) satisfies the formula ¢(r), and
for a random string r it is difficult, given ¢(r), to find any satisfying assignment
for ¢(r).

The one-way function corresponding to the above h is the map which takes »
to ¢(r). This function can be computed in polytime, but it is hard to invert: If
given ¢(r) I could find any ' mapping to ¢(r) (i.e. ¢(r') = ¢(r)) then I have found
t(r') which satisfies ¢(r), violating the assumption above.

Conversely, suppose f: {0,1}* — {0, 1}* is a length-preserving one-way func-
tion. Then f can be computed in polytime, but for a random z, given y = f(x), it
is difficult to find any z’ such that f(z') = y. This f can be used to generate hard
solved instances of 3—SAT as follows.

Since f is length preserving and polytime, for each n there is a polysize Boolean

circuit C,, which takes the n input bits @1, ..., z, representing the string x to the
n output bits y1, ..., y, representing the string y = f(x). If the circuit has s gates,
then we may introduce s new variables z1, ..., z5, one for each gate, and express the

correctness of each gate by the conjunction of at most four 3-literal clauses, which
assert that the output of the gate is correct with respect to its inputs. (For each
gate computing a circuit output value y;, we should replace the variable z; for that
gate by the variable y;.) The conjunction of all such clauses is a formula ¢, in the
z’s, y’s, and z’s asserting the correctness of the circuit. Now given an n-bit string
a = ay...an, we can compute f(a) = b = by...b, and we can compute the formula
da) = én ANYL A AY,, where s y; if b = 1 and otherwise g is —y;. Further,
we can compute the satisfying assignment t(a) = a1, ..., an, b1, ..., bpn, 1, ..., ¢5 to the
variables ©1,..., Zn, Y1, ..., Yn, 21, ..., 45 1D ¢(a), where ¢; is the value of gate j when
the inputs are aq,...,a,. Finally, we define h(a) = (¢(a), ¢(a)). Notice that the
formula ¢(a) can be computed from b (without knowledge of a), and if given ¢(a)
any satisfying assignment can be found, then this assignment would give rise to a
string o’ such that f(a’) = b.

6.1. SAT challenge. Several conjectures on the difficulty of number-theoretic
functions 1mply the existence of one-way functions, but the most basic such con-
jecture is that factoring large integers is difficult. A specific problem supposed to
be difficult is: Given the product M = P@ of two random n-bit primes P and @,
find P and (). A SAT instance would be an encoding of a boolean multiplier circuit
computing the known product M from unknown inputs P and (). Variables are
the bits of P and @ (the inputs to the circuit), together with outputs of the gates
of the circuit. Clauses assert the correct behavior of the gates, and assert that the
outputs of the circuit represent the given value of M. This problem differs from
most other benchmarks in that there is essentially a unique satisfying assignment.

Challenge: Report the largest n for which your SAT solver can (consistently)
find P and @ within one hour.

Part of the challenge is to find a suitable multiplier circuit: not too complex,
and probably not too deep (see for example [Weg], section 3.2).

The state of the art for number-theoretic factoring methods seems to be around
n ~ 200 bits (about 60 decimal digits for each prime). We believe that the current
state for the SAT encoding approach is very much less than this.

14

[APT79]

[Asp&0]

[BS96]

[BASO]
[BCGL92]
[BAHt94]

[BFU93]

[CA96]

[CCH*90]

[CHY1]

[CF90]

[CR92]
[CSss]

[CC92]

[CooT1]

[CooT5]
[DLL62]
[DP60]
[DR94]
[DG84]

[DABC93]

[DBY6]

[EIS76]

STEPHEN A. COOK AND DAVID G. MITCHELL

References

Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121-123, March 1979.

Bengt Aspvall. Recognizing disguised NR(1) instances of the satisfiability problem.
Journal of Algorithms, 1:97-103, 1980.

Roberto J. Bayardo, Jr. and Robert Schrag. Using CSP look-back techniques to solve
exceptionally hard SAT instances. In Proc. of the Second Int’l Conf. on Principles
and Practice of Constraint Programming, (Lecture Notes in Computer Science 1118),
46-60, Springer, 1996.

Mordechai Ben-Ari. A simplified proof that regular resolution is exponential. Infor-
mation Processing Letters, 10(2):96-98, 1980.

S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case
complexity. JCSS, 44, 193-219, 1992.

A. Beringer, G. Aschemann, H.H. Hoos, M. Metzger and A. Weifs. GSAT versus Sim-
ulated Annealing. In Proc. ECAI-9/, pages 130-134, 1994.

A. Broder, A. Frieze, and E. Upfal. On the satisfiability and maximum satisfiability of
random 3-CNF formulas. In Proc. Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, 1993.

J.M. Crawford and L..D. Auton. Experimental results on the cross-over point in random
3-SAT. Artificial Intelligence, 81:31-57, 1996.

Vijaya Chandru, Collette R. Coullard, Peter L. Hammer, Miguel Montanez, and Xi-
aorong Sun. On renamable horn and generalized horn functions. Annals of Mathemat-
ies and Artificial Intelligence, pages 33—47, 1990.

Vijaya Chandru and John Hooker. Extended Horn sets in propositional logic. Journal
of the ACM, 38(1): 205-221, 1991,

M. Chao and J. Franco. Probabilistic analysis of a generalization of the unit-clause lit-
eral selection heuristics for the k satisfiability problem. Information Sciences, 51:289—
314, 1990.

V. Chvétal and B. Reed. Mick gets some (the odds are on his side). In Proc. of the
33rd IEEE Symposium on the Foundations of Computer Science, Pittsburgh, 1992.
Vasek Chvatal and Endre Szemerédi. Many hard examples for resolution. Journal of
the ACM, 35(4):759-768, 1988,

Michele Conforti and Gérard Cornuéjols. A class of logic problems solvable by linear
programming. In Proc. of the 83rd IEEFE Symposium on the Foundations of Computer
Science, Pittsburgh, 1992.

Stephen Cook. The complexity of theorem proving procedures. In Proc. 8rd Ann.
ACM Symp. on Theory of Computing, pages 151-158, New York, 1971. Association
for Computing Machinery.

Stephen Cook. Feasibly constructive proofs and the propositional calculus. In Proc.
7th Ann. ACM Symp. on Theory of Computing, 83-97, 1975.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394-397, 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201-215, 1960.

R. Dechter and I. Rish. Directional Resolution: The Davis-Putnam Procedure, Revis-
ited. In Proc. KR-94, 134-145, 1994.

W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulas. Journal of Logic Programming, 1(3):267-284, 1984.

O. Dubois, P. Andre, Y. Boufkhad and J. Carlier. SAT versus UNSAT. In Cliques,
Coloring, and Satisfiability: Second DIMACS Implementation Challenge, David S.
Johnson and Michael A. Trick (eds.), Dimacs Series in Discrete Mathematics and
Computer Science (26), American Mathematical Society, 1993.

O. Dubois, Y. Boufkhad. A General Upper Bound for the Satisfiability Threshold of
Random r-SAT Formulae. Preprint, 1996. See also: Les lois de tout our rein, in Pour
la Science, July 1995.

S. Even, A. Itai, and A Shamir. On the complexity of timetable and multi-commodity
flow problems. SIAM Journal on Computing, 5(4), 1976.

[FP83]

[FW97]

[Frase]
[Fre94]
[FS92]
[Fu9s]
[Gal77]
[Goe92]
[Gol79]
[GUS9]
[Gusg]
[Gu92]
[Gu93]

[Gur91]
[GW94]

[GW95]

[Hak85]

[HK93]

[Hoo88]
[HF90]

[HTL92]

[TLL89]
[Twag9]

[JAMS91]

[TW90]

[KKRR90]

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 15

J. Franco and M. Paull. Probabilistic analysis of the Davis Putnam procedure for
solving the satisfiability problem. Discrete Applied Math, 5:77-87, 1983.

J. Franco and R.P. Swamanithan. Average Case Results for Satisfiability Algorithms
Under the Random Clause Model. To appearin: Annals of Mathematics and Artificial
Intelligence.

John Franco. On the probabilistic performance of algorithms for the satisfiability prob-
lem. Information Processing Letters, 23:103-106, August 1986.

J.W. Freeman. Improvements to propositional satisfiability search algorithms., Doc-
toral Dissertation, University of Pennsylvania, Philadelphia, PA, 1994.

A. Frieze and S. Suen. Analysis of three simple heuristics on a random instance of
k-SAT. Preprint, 1992. To appear in Journal of Algorithms.

Xudong Fu. The complexity of the resolution proofs for the random set of clauses.
Preprint, 1995.

Zvi Galil. On the complexity of regular resolution and the Davis-Putnam procedure.
Theoretical Computer Science, 4:23—46, 1977.

A. Goerdt. A threshold for unsatisfiability. In Proc. of the 17th International Sympo-
sium on Mathematical Foundations of Computer Science, Prague, August 1992.

A. Goldberg. On the complexity of the satisfiability problem. Courant Computer Sci-
ence Report No. 16., 1979. New York University.

Giorgio Gallo and Giampaolo Urbani. Algorithms for testing the satisfiability of propo-
sitional formulae. Journal of Logic Programmaing, 7:45—61, 1989.

Jun Gu. Parallel algorithms and architectures for very fast search. Ph.D. Thesis, De-
partment of Computer Science, University of Utah, 1989.

Jun Gu. Efficient local search for very large-scale satisfiability problems. SIGART
Bulletin, 3(1):8-12, 1992.

Jun Gu. Local search for satisfiability problem. IEEE Transactions on Systems, Man,
and Cybernetics, 23(4):1108-1129, July 1993.

Yuri Gurevich. Average case completeness. JCSS 42,3, 346-398, 1991.

I.P. Gent and T. Walsh. The hardest random SAT problems. In Proceedings, KI-94,
1994.

LI.P. Gent and T. Walsh. Unsatisfied variables in local search. In Proceedings, AISB-95,
pages 73-85,1995. (Appears as a the book entitled Hybrid Problems, Hybrid Solutions,
J. Hallam (Ed.), IOS Press, 1995.)

A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,
1985.

Steven Hampson and Dennis Kibler. Plateaus and plateau search in boolean satisfi-
ability problems: When to give up searching and start again. Workshop Notes: 2nd
DIMACS Challenge, 1993.

J.N. Hooker. Resolution vs. cutting plane solution of inference problems: some com-
putational experience, Operations Research Letters, 7(1):1-7, 1988.

J.N. Hooker and C. Fedjki. Branch-and-cut solution of inference problems in proposi-
tional logic. Annals of Mathematics and Artificial Intelligence, 1:123-139, 1990.
T.H. Hu, C.Y. Tang, and R.C.T. Lee. An average case analysis of a resolution prin-
ciple algorithm in mechanical theorem proving. Annals of Mathematics and Artificial
Intelligence, 6:235—-252, 1992.

R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random number generation from one-
way functions. Proc. 21st STOC, 1989, pp 12-24.

Kazuo Iwama. CNF satisfiability test by counting and polynomial average time. STAM
Journal on Computing, 18(2):385-391, 1989.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by sim-
ulated annealing: an experimental evaluation; part ii, graph coloring and number
partitioning. Operations Research, 39(3):378-406, 1991.

Robert E. Jeroslow and Jinchang Wang. Solving propositional satisfiability problems.
Annals of Mathematics and Artificial Intelligence, 1:167-187, 1990.

A.P. Kamath, N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. Computa-
tional experience with an interior point algorithm on the satisfiability problem. Annals
of Operations Research, 25:43-58, 1990.

16

STEPHEN A. COOK AND DAVID G. MITCHELL

[KMPS94] Anil Kamath, Rajeev Motwani, Krishna Palem, and Paul Spirakis. Tail bounds for

[KKK96]
[KP92]
[Kra95]
[Lar92]

[LT92]

[Lev&s)
[Lew78]
[Luby9s6]

[MJPL90]

[MS95]
[ML96]
[MSL92]
[Pap91]

[Pap94]
[Pre93]

[Pud9s]
[Pur90]

[Sch9g]

[SAFS95]
[SK93]
[SKC94]
[SK96]
[SLM92]
[SD&9]
[SC90]

[Sp93]

occupancy and the satisfiability threshold conjecture. In Proc. FOCS-94, 1994.

L.M. Kirousis, E. Kranakis, and D. Krizanc. Approximating the unsatisfiability thresh-
old of random formulas. Preprint, 1996.

FElias Koutsoupias and Christos H. Papadimitriou. On the greedy algorithm for satis-
fiability. Information Processing Letters, 30:53-55, 1992.

Jan Krajféek. Bounded Arithmetic, Propositional logic, and Complexity Theory, Cam-
bridge, 1995.

T. Larrabee. Test pattern generation using Boolean satisfiability. IEFE Transactions
on Computer-Aided Design, pages 6—22, January 1992.

T. Larrabee and Y. Tsuji. Evidence for a satisfiability threshold for random 3CNF
formulas. Technical Report UCSC-CRL-92-42, CRL, University of California, Santa
Cruz, November 1992.

Leonid A. Levin. Average case complete problems. STAM J. Comput., 15(1):285-286,
February 1986.

Harry R. Lewis. Renaming a set of clauses as a horn set. Journal of the ACM,
25(1):134-135, January 1978.

Michael Luby. Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, 1996.

S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Solving large-scale constraint
satisfaction and scheduling problems using a heuristic repair method. In Proceedings
AAAI-30, pages 1724, 1990.

Jahann A. Makowsky and Abraham Sharell. On average case complexity of SAT for
symmetric distribution. J. Logic Computat., 5(1):71-92, 1995.

David G. Mitchell and Hector J. Levesque. Some pitfalls for experimenters with ran-
dom SAT. Artificial Intelligence, 81:111-125, 1996.

D.G. Mitchell, B. Selman, and H.J. Levesque. Hard and easy distributions of SAT
problems. In Proc. AAAI-92, San Jose, CA, 1992.

Christos H. Papadimitriou. On selecting a satisfying truth assignment. In Proc. FOC'S-
91, pages 163-169, 1991.

Christos H. Papadimitriou. Computational Complexity. Addison—Wesley, 1994.

D. Pretolani. Solving satisfiability problems: An algorithm implementation challenge?
(extended abstract). Workshop notes, 2nd DIMACS Challenge, 1993.

Pavel Pudldk. Lower bounds for resolution and cutting planes proofs and monotone
computations. J. Symbolic Logic (to appear).

P. Purdom. A survey of average time analyses of satisfiability algorithms. Journal of
Information Processing, 13(4), 1990.

Ingo Schiermeyer. Pure Literal Look Ahead: An O(1,497") 3-Satisfiability Algorithm
(Extended Abstract). In: Workshop on the Satisfiability Problem, Technical Report,
Siena, April 29-May38, 1996, J. Franco, G. Gallo, H. Kleine-Biining, E. Speckenmeyer,
C. Spera (Eds.), University of Kdln, 1996.

John Schlipf, Fred Annextein, John Franco and R.P. Swaminathan. On finding solu-
tions for extended Horn formulas. Information Processing Letters, 54:133-137, 1995.
Bart Selman and Henry Kautz. An empirical study of greedy local search for satisfia-
bility testing. In Proc. AAAI-93, pages 46-51, 1993.

Bart Selman, Henry Kautz, and Bram Cohen. Noise strategies for improving local
search. In Proceedings, AAAI-94, pages 337—-343, 1994.

Bart Selman and Scott Kirkpatrick. Critical behavior in the computational cost of
satisfiability testing. Artificial Intelligence, 81:273-295, 1996.

Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard
satisfiability problems. In Proceedings, AAAI-92, San Jose, CA, 1992.

J.C. Simon and O. Dubois. Number of solutions of satisfiability instances — applications
to knowledge bases. Inter. J. of Pattern Recognition and A.l, 3(1):53-65, 1989.

R. Sosic and J. Gu. A Polynomial Time Algorithm for the N-Queens Problem. SIGART
Bulletin, 1(3), 1990.

William M. Spears. Simulated annealing for hard satisfiability problems. In, Workshop
Notes from the 1993 DIMACS Challenge.

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 17

[Tse70] @G.S. Tseitin. On the complexity of derivation in propositional calculus. In; Slisenko
(Ed.), Studies in Constructive Mathematics and Mathematical Logic — Part II, A.O.,
pages 115-125. Consultants Bureau, New York, 1970.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209-219,
January 1987.

[VanG96] Allen Van Gelder. Personal Communication.

[VL83] Ramarathnam Venkatesan and Leonid A. Levin. Random instances of a graph coloring
problem are hard. Proc. 20th STOC, 217-222, 1988.

[WB93] J. Wang and J. Belanger. On average P vs. average NP. In Complexity Theory —
Current research (K. Ambos-Spies, S. Homer, U. Schoning, eds.), Cambridge Univer-
sity Press, 1993, pp.47-67.

[Weg] Ingo Wegener. The Complexity of Boolean Functions, Wiley and Teubner, 1987.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, M5S 3G4
CANADA

FE-mail address: sacook@cs.toronto.edu

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, M5S 3G4
CANADA

FE-mail address: mitchell@cs.toronto.edu

