
DIMACS Series in Discrete Mathematicsand Theoretical Computer ScienceV olume 35, 1997.Finding Hard Instances of the Satis�ability Problem:A SurveyStephen A. Cook and David G. MitchellAbstract. Finding sets of hard instances of propositional satis�ability is ofinterest for understanding the complexity of SAT, and for experimentally eval-uating SAT algorithms. In discussing this we consider the performance of themost popular SAT algorithms on random problems, the theory of average casecomplexity, the threshold phenomenon, known lower bounds for certain classesof algorithms, and the problem of generating hard instances with solutions.1. IntroductionPropositional Satis�ability is the problem of determining, for a formula of thepropositional calculus, if there is an assignment of truth values to its variables forwhich that formula evaluates to true. By SAT we mean the problem of proposi-tional satis�ability for formulas in conjunctive normal form (CNF). Although SATis apparently intractable in the worst case, many instances of the problem are eas-ily solved in practice. Finding ways to generate sets of hard instances is importantfor understanding the complexity of the problem, and for providing challengingbenchmarks for experimental evaluation of algorithms.The �rst, and one of the simplest, of the many problems which have been shownto be NP-complete, SAT holds a central position in the study of computationalcomplexity. As the dual of propositional theorem proving, it is amenable to theproof of non-trivial lower bounds based on lengths of proofs. Instances which haveonly long proofs in certain proof systems are intractable for corresponding classesof algorithms. On the other hand, many practical problems are NP-hard andmay be transformed e�ciently to SAT, or have component problems which can be.Thus, a good SAT algorithm would likely have considerable utility. Since it seemsimprobable that a polynomial time algorithm will be found, \good" might meanperforming well on average, or with high probability, or on a class of \interesting"inputs. The hard inputs for a class of algorithms characterize the limitations ofthose algorithms, and point up where additional research is needed.1991 Mathematics Subject Classi�cation. Primary 68Q25; Secondary 03B05, 03F20.The �rst author was supported by the Natural Sciences and Engineering Research Councilof Canada and the Information Technology Research Centre. The second author was supportedby the Natural Sciences and Engineering Research Council of Canada.c
0000 American Mathematical Society1052-1798/00 $1.00 + $.25 per page1

2 STEPHEN A. COOK AND DAVID G. MITCHELLThe remainder of the paper is organized as follows. In section 1.1 we providede�nitions and terminology. Since the notion of hard instances must usually bein terms of particular algorithms, section 2 considers some of the most popularand successful SAT algorithms. Section 3 examines the average case performanceof these algorithms, and properties of randomly generated formulas, including the\threshold phenomenon". We follow this with a discussion of the theory of averagecase complexity in section 4. Lower bounds for certain classes of algorithms can beshown based on sets of unsatis�able instances, whereas �nding sets of hard satis-�able instances is a challenging problem. These issues are discussed in sections 5and 6, respectively.1.1. Terminology and De�nitions. Let U = fu1; u2; : : : ; ung be a set ofn boolean variables. A (partial) truth assignment for U is a (partial) functionT : U ! ftrue,falseg. Corresponding to each variable u are two literals, u and:u. A literal u (resp. :u) is true under T i� T (u) = true (resp. T (u) = false).We call a set of literals a clause, and a set or sequence (tuple) of clauses a formula.We say variable u is mentioned in a clause C if u 2 C or :u 2 C. If � is a formula,then vars(�) is the set of variables mentioned in �.Let � be a formula, U = vars(�), and C a clause in �. We interpret � as aformula of the propositional calculus in conjunctive normal form (CNF), so that atruth assignment T for U satis�es C i� at least one literal u 2 C is true under T ,and T satis�es � i� it satis�es every clause in �. For brevity we sometimes call asatisfying assignment for � a solution. We will write �(u) for the result of setting aliteral u to true and simplifying. That is, �(u) =def fC j C 2 �, fu;:ug \ C = ;g[fCn:u j C 2 �;:u 2 Cg.The restriction of SAT to instances where all clauses have length k is denotedk{SAT. Of special interest are 2{SAT and 3{SAT: 3 is the smallest value of kfor which k{SAT is NP-complete [Coo71], while 2{SAT is solvable in linear time[EIS76, APT79]. Horn{SAT is the restriction to instances where each clause hasat most one unnegated variable. Horn{SAT is solvable in linear time [DG84], as area number of generalizations such as Re-nameable Horn{SAT, the class of formulasthat can be converted to Horn merely by renaming (reversing the sign) of somevariables [Lew78, Asp80], and Generalized Horn{SAT, an extension of Horn{SATbased on a nesting property [CH91, CCH+90] (see also [CC92, SAFS95]).In what follows, we will use n for the number of variables in a formula, mfor the number of clauses and k for the clause \length" (e.g., number of literals).When discussing distributions of formulas, n, m and k will refer to parameters toa distribution, rather than particular formulas, and we trust meaning will be clearfrom context. 2. AlgorithmsA procedure for SAT is sound if every input on which it returns yes is satis�able,and complete if in addition it returns yes (in �nite time) on every satis�able input.In practice, we often need a procedure to return a solution when the input is asatis�able formula { the search or function version of SAT { and the most popularalgorithms do return solutions.2.1. Complete Methods. Since resolution is refutation complete, a simplemethod for testing satis�ability is to generate all possible resolvents, and then check

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 3if the empty clause has been generated. Davis and Putnam [DP60] introduced amethod (hereafter called DP60), in which variables are eliminated one-by-one fromthe formula by, at each step, generating all possible resolvents based on a chosenvariable and then deleting all clauses mentioning that variable. Each step generatesa sub-problem with one fewer variable, but possibly quadratically more clauses.This is easily seen to be a special case of regular resolution.DP60 employs two heuristics, the pure literal rule and the unit clause rule,which together state: If some variable occurs in the current formula in a clauseof length 1, or occurs only negated, or occurs only unnegated, then choose such avariable to eliminate next. This is e�ective because the remaining formula must besmaller than the original. It is not hard to see that DP60 may generate an expo-nential number of clauses in the general case, but at most quadratically many onany instance of 2{SAT. Careful implementation of the unit clause rule results inlinear-time handling of (Generalized/Re-nameable) Horn formulas which are unsat-is�able, but not necessarily those which are satis�able. Indeed, DP60 seems ill-suitedfor use on satis�able formulas, since many resolvents may be generated even whena satisfying assignment can be found easily by other methods.Davis, Logemann and Loveland [DLL62] found that in implementation DP60generated an unmanageable number of resolvent clauses, and replaced the \elim-ination rule" with a \splitting rule". In this version, selecting a variable leads totwo smaller sub-problems { one for each truth value { instead of a single, possiblylarge, sub-problem. The resulting procedure (which we will call DPLL) is a back-tracking depth-�rst search through (partial) truth assignments, augmented by theunit clause and pure literal heuristics;Procedure DPLL(CNF formula: �)if � is empty return yes.else if there is an empty clause in � return no.else if there is a pure literal u in � return DPLL(�(u)).else if there is a unit clause fug in � return DPLL(�(u)).else(*) select a variable v mentioned in �.if DPLL(�(v))=yes thenreturn yes.elsereturn DPLL(�(:v)).endendIn the literature, both DP60 and DPLL have often been called \the Davis-PutnamProcedure". However, the two methods perform quite di�erently on some problems,and are incomparable with respect to complexity analysis [Gol79, DR94].The variable selection rule (*) may be as simple as choosing the �rst remainingvariable in �, or it may be quite sophisticated. In the original version the ruleused is; pick a variable occurring in the �rst clause of minimal length. The mostpopular rules currently are variants on ideas suggested in [DLL62, Gol79], anddescribed by Pretolani [Pre93] as Moms variable selection strategy: branch on avariable (or literal) with Maximumnumber of occurrences in minimum size clauses.A wide range of heuristics can be found in the literature. In particular, Dubois and

4 STEPHEN A. COOK AND DAVID G. MITCHELLcolleagues [DABC93], Crawford and Auton [CA96], and Freeman [Fre94], haveemployed careful evaluation of heuristics in developing extremely fast implementa-tions.Variants of DPLL work quite well in practice, and are probably the most widelyknown and used SAT testing methods. DPLL also appears to be close to the best wecurrently know how to do in terms of worst-case performance. The worst case timefor this procedure on 3{SAT is O(20:762n), and a very small modi�cation improves itto O(20:694n) [VanG96]. The current best bound on the time to decide membershipin 3{SAT is O(20:582n) [Sch96], using a set of complex re�nements to DPLL whichseem unlikely to be useful in practice. Complex methods to reduce the size of thesearch tree often do not lead to corresponding reductions in actual execution time,because of the additional work needed at each node.Since DPLL may �nd a solution and exit early, it seems much better suitedto use on satis�able instances than DP60. As in the case of DP60, with carefulimplementation of the unit clause rule, DPLL handles unsatis�able (Generalized/Re-nameable) Horn formulas well, but without enhancement it performs sub-optimallyon 2{SAT and satis�able Horn formulas.We may call the backtrack tree of DPLL on an unsatis�able formula a \DPLLproof". Corresponding to every DPLL proof is a tree resolution refutation of size nolarger than the DPLL proof tree [Gol79, Chapter 3] (sometimes there are also muchsmaller tree refutations).Many other complete methods have been devised, including for example Iwama'smethod for enumerating sets of non-solutions [Iwa89], Larrabee's method of tryingto extend solutions to the 2{CNF subset of a general formula [Lar92], and Galloand Urbani's use of Horn relaxations [GU89]. While some of these perform well onsome classes of problems, they have not been as widely studied or tested as DPLL.2.2. Incomplete Methods. Incomplete methods can be thought of as model�nders: they cannot prove unsatis�ability, but are often much better than theknown complete methods at �nding satisfying assignments when they exist. Typ-ically these methods employ some notion of randomized local search. That thiswas a promising approach for SAT is a relatively recent discovery, made indepen-dently by Selman et al [SLM92] and Gu [Gu92]. Selman's algorithm GSAT wasinspired by a very closely related technique developed by Minton and his colleaguesfor Constraint Satisfaction Problems [MJPL90]. An intriguing contribution wasthe report by Sosic and Gu [Gu89, SG90] that this approach yielded very fast so-lutions to n-queens problems, which had previously been popular as a benchmark(known explicit solutions not-with-standing).In local search, a cost function is de�ned over truth assignments such that globalminima correspond to satisfying assignments. One guesses a truth assignment as apotential solution, and then tries to improve that guess incrementally by checkingtruth assignments within a neighborhood of the current one for one with lower cost.In almost all work to date, the initial guess is a random truth assignment, the costfunction is the number of clauses not satis�ed by the current truth assignment, andthe neighborhood is the set of truth assignments at Hamming distance one fromthe current guess.The most widely studied of these algorithms is Selman's GSAT [SLM92]. Ateach step of this algorithm the truth assignment of one variable is \
ipped". Thevariable selected is the one which leads to the best neighboring truth assignment.

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 5Ties are broken randomly. A
ip is made even if the best
ip increases the numberof unsatis�ed clauses. This di�ers from the classical notion of local search, in whichan improvement is made at every step, and search is terminated when no improvingstep is available. If restricted to improving steps, GSAT performs very poorly, andin practice steps which make no change to the score dominate the search, exceptduring an short initial descent phase [SK93].One's intuition might be that such an algorithm will always get stuck in localminima, and the surprise of it's success is that this happens much less often thanone might expect. However, it does happen and the procedure may need to beexecuted many times from di�erent starting points to solve hard instances. Sincefor incomplete methods there is no a priori termination condition in the event ofnot �nding a solution, GSAT is parameterized by two bounds; \max-
ips" to limitthe number
ips to do before re-starting with a new initial guess, and \max-tries"to terminate altogether. Gu, in the development of his SAT1 family of local searchbased algorithms, also employed a variety of techniques for escaping local minima,including backtracking and random
ips as well as restarts [Gu93]. Determininga general restart criterion would appear to be a tricky problem (see for example[GW95, HK93]). However it seems that for some related algorithms, which wediscuss next, re-starting is not necessary.In a similar approach to model �nding, which we will call iterative repair,unsatis�ed clauses are viewed as \symptoms" of a \
aw" in the truth assignmentto be \repaired": If a formula is satis�able, then any truth assignment which doesnot satisfy some clause must be wrong on at least one variable mentioned in thatclause. This approach is distinguished from from local search in that every iterativerepair step is directly addressed to a
aw, but a step may make the natural costfunctions arbitrarily worse. A generic iterative repair algorithm is,Procedure IR(CNF formula: �)Guess a truth assignment T .while T does not satisfy �.if time or iteration limit exceeded then return no.Select a clause C 2 � not satis�ed by T .Modify T to satisfy C.end whilereturn yes.end IRThe simplest version of iterative repair is the Random Walk algorithm, whichrepeatedly selects a clause at random from those currently not satis�ed, and then
ips one of the variables in that clause, chosen at random. In the case of sat-is�able instances of 2{SAT, Random Walk (indeed any reasonable iterative repairalgorithm) may be analyzed as a gambler's ruin, and shown to solve such instancesin O(n2) time on average [Pap91]. Although Random Walk will always eventuallysolve any satis�able CNF formula, it is not hard to demonstrate 3{CNF exampleswith exponential expected time [Pap94], and in experimentation the method failsbadly on random 3{SAT.Selman, Kautz and Cohen [SKC94], found that a probabilistically greedy ver-sion of Random Walk performed better than GSAT on most types of problems tested.On each iteration this algorithm, called WalkSAT, selects an unsatis�ed clause at

6 STEPHEN A. COOK AND DAVID G. MITCHELLrandom, and then tosses a coin to determine if the variable to be
ipped will bechosen randomly from this clause, or will be the variable in this clause that leadsto the greatest number of satis�ed clauses when
ipped. Another version that wasfound to work very well tosses a coin at each iteration to decide between taking aRandom Walk step or a GSAT step. In both algorithms, the case of
ipping a lit-eral non-greedily serves to prevent getting stuck in local optima, so that restartingbecomes less important.Viewed schematically, these procedures bear considerable resemblance to simu-lated annealing (SA) [JAMS91], and suitably tuned versions of SA do in fact per-form comparably with the algorithms just described [Sp93, BAH+94, SKC94].The basic SA algorithm for SAT begins with an initial random truth assignment,and repeats the following step; Pick a random variable, and compute �, the changein the number of un-satis�ed clauses when the variable is
ipped. If � � 0 make the
ip, otherwise make the
ip with probability e��=T , where T is the temperature, andis usually a decreasing function of the number of steps taken. The low-probability
ips which decrease the number of satis�ed clauses serve as a mechanism to escapelocal minima.Randomized model �nding algorithms have been the subject of considerablerecent study. While many variants do not work well, a number of versions performmuch better than DPLL and other complete methods on almost all benchmark prob-lems that have been tested. However, they are only useful in applications where theincompleteness is an acceptable trade-o� for speed at model �nding. Further, eachof them is subject to defeat by relatively easily constructed examples { althoughsatis�able formulas which are hard both for the known deterministic algorithmsand the model �nding methods appear not to be common.Almost no progress has been made in the analysis of randomized model-�ndingalgorithms for SAT. As mentioned above, all iterative repair methods work inpolynomial expected time for satis�able instances of 2{SAT and (via a simple re-writing trick), Re-nameable-Horn{SAT. These problems, however, have linear timedeterministic algorithms. Koutsoupias and Papadimitriou [KP92] proved for aversion of randomized 3{SAT that any local search algorithm will almost always�nd solutions to satis�able instances with at least
(n2) clauses, however randomformulas with more than a linear number of clauses are almost always unsatis�able.Other incomplete algorithms include use of standard mathematical program-ming and numerical optimizationmethods. Experiments have been reported, for ex-ample, using branch-and-bound, cutting planes, and interior point methods [Hoo88,HF90, JW90, KKRR90]. Although many experimenters have done SAT test-ing with mathematical programming methods, most published reports have usedproblems which are quite easy for a good implementation of DPLL [ML96], so thee�ectiveness of these approaches is not well established in the literature.3. Average-Case PerformanceThe theory of NP-completeness is based on worst-case complexity. The factthat 3{SAT isNP-complete implies, assuming P 6= NP, merely that any algorithmfor 3{SAT must take an infeasible amount of time for in�nitely many inputs. Toexplain the behavior of algorithms in practice, the theory of average-case complexityis more appropriate. For this we need to supply a probability distribution onformulas for each input length. Two families of \random formulas" have been the

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 7subject of signi�cant study, one based on �xed clause lengths and the other based onrandom clause lengths. Formula distributions may be used in analyzing algorithms,in empirically evaluating algorithms, or as a subject in problem complexity.The �rst average case analysis of SAT of which we are aware was carried out byGoldberg [Gol79] on random clause length formulas. Formulas from the randomclause length (or \�xed density") model are constructed in the following way: Foreach of the m clauses, include each of the 2n literals with probability p (where p andm may be functions of n). It follows from Goldberg's work that, for any constantvalue of p, DPLL solves these formulas in timeO(mn2) on average. This �rst positiveresult was put in perspective by Franco and Paull [FP83], who showed that it wasa consequence of a favorable choice of distribution, rather than favorable propertiesof DPLL: A constant number of guesses of random truth assignments will �nd onethat satis�es an instance from this family with probability tending to 1 as n grows.(More recently it has been shown that DP60 has linear time average performanceon these same formulas [HTL92].)Numerous further analyses of these formula distributions have been published,employing a variety of algorithms which take advantage of di�erent properties whichhold in di�erent areas of the parameter space. Deterministic algorithms are nowknown which solve instances of this family in polynomial average time for all buta vanishingly small part of the parameter space. The formulas not yet known tobe solvable e�ciently on average occur, roughly, when the expected clause lengthis a little less than ln(m). See the study by Franco and Swaminathan [FW97]for details. See also [Pur90, Fra86] for earlier work. It is worth noting that thealgorithms involved are quite simple, and easily implemented. For most practicalpurposes, then, this family of formula distribution must be regarded as easy onaverage, and not a likely source of hard instances. Experimental study con�rmsthis, as we discuss below.Franco also found that the �xed-clause length formulas took exponential timeon average for DPLL when �nding all solutions, and suggested this might be amore interesting distribution for study [FP83]. Fixed-clause-length formulas aregenerated by selecting clauses uniformly at random from the set of all possible (non-trivial) clauses of a given length. We call such sets random k{SAT. The empiricalperformance of a version of DPLL on random 3{SAT was investigated in [MSL92](see Figure 1). When c is small, say less than 3, most instances are are very quicklysolved. When c is large, say more than 6, instances are harder than those at smallratios, but only moderately. In the region between these ratios average di�cultyis dramatically greater. Also between these ratios, the probability of satis�abilityshifts smoothly from near 1 to near 0 (as independently reported earlier in [SD89]).It is intriguing that the peak in di�culty occurs near the ratio where about half ofthe formulas are satis�able { especially since this is the same region that appearshardest to analyze. The same pattern of hardness was found in [LT92], using asubstantially di�erent algorithm, and we have conjectured that this general patternwill hold, qualitatively, for all reasonable complete methods. The same pattern isalso found for larger values of k, but with the transition at higher ratios, and thepeak di�culty for DPLL much greater [ML96].Random clause length formulas have also been studied empirically, (and untilrecently were the most popular in reported experiments). It is readily apparentthat most of these formulas are easy, because they often contain empty clauses,unit clauses and trivial clauses. Thus, experimenters shifted to a model where these

8 STEPHEN A. COOK AND DAVID G. MITCHELL
010002000300040005000Calls Median DPLL calls, 50-var 3{SAT
00.250.50.751 2 3 4 5 6 7 8Prob. Ratio of Clauses to Variables (m=n)

Proportion Satis�able, 50-var 3{SAT
Figure 1. Random 3{SAT: DPLL performance and probability ofbeing satis�able.three clause types are excluded. In [MSL92, ML96], the performance of DPLL onthese modi�ed formulas was investigated. When p is made a function of n so thatexpected clause length remains constant as n is increased, these formulas exhibit thesame easy-hard-easy pattern, and the same satis�able-to-unsatis�able transition, asthe random 3{SAT formulas (as was also observed in [HF90]). However, the peakin di�culty at the transition region is much less dramatic with these formulas, andthey are very much easier to test than similar sized �xed-clause length formulas.Moreover, it was found that most experiments in the literature had been doneat clause-to-variable ratios which were in the easy region, and thus are not veryinformative about the quality of the algorithms tested. In some cases, formulaswith thousands of variables and tens of thousands of clauses can be consistentlysolved with no more than two or three backtracks each.Gent and Walsh [GW94] investigated rare instances to the left of the \hardregion" which appear extremely hard because of excessive run times for DPLL. Theseappear in both random clause and �xed clause formula families in the \easy" region,where most instances are trivial to show satis�able. However, such instances seemto be amenable to attack by one or more existing enhancements to backtracking[SK96, CA96, BS96].Thus it appears that the hard formulas in the transition region for random k{SATare the most useful random formulas of the kind we have so far discussed for eval-uating the performance of algorithms. Recently Bayardo and Schrag [BS96] have

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 9described \literal-regular 3{SAT" instances, which are like random 3{SAT instances,except the number of occurrences of each literal in an instance is forced to be thesame. Their experiments indicate that such distributions still exhibit a transitionregion for the clause/variable ratio, but now shifted to about 3.6 from 4.3, and theirrandom instances in the transition region are signi�cantly harder to test (for DPLL)than are standard random 3{SAT formulas in the transition region.3.1. The Threshold Conjecture. Experimentally, the probability of an in-stance of random 3{SAT being satis�able shifts with the ratio of clauses-to-variables,from being almost 1 with ratios much below 4 to being almost 0 at ratios muchabove 5. The range of ratios over which this transition occurs becomes smaller asn is increased. A similar pattern holds for other clause lengths, at di�erent ra-tios. This, together with the common occurrence of threshold phenomena in otherrandom combinatorial structures such as random graphs, suggests the followingthreshold conjecture: For each k, there is some c� such that for each �xed value ofc < c�, random k{SAT with n variables and cn clauses is satis�able with probabilitytending to 1 as n!1, and when c > c�, unsatis�able with probability tending to1. For the case of random 2{SAT, the conjecture has been shown true, and c� = 1[Goe92, CR92].In the case of k = 3, the current bounds on the location of this threshold, ifit exists, are 3:003 < c� < 4:598. This lower bound was given by Frieze and Suen[FS92] who, extending previous work by Chao and Franco [CF90], and Broder,Frieze and Upfal [BFU93], gave an algorithm GUCB which, with probability tend-ing to 1, �nds a satisfying truth assignment (in polynomial time) for instances ofrandom 3{SAT whenever c < 3:003. Suitable variants of DPLL succeed in �nding so-lutions whenever GUCB does, and in the same time, and therefore will almost always�nd solutions to these instances in polynomial time (although polynomial averagetime does not necessarily follow).The upper bound is due to Kirousis, Kranakas and Krizanc [KKK96], whichimproves previous bounds of 4.64 by Dubois and Boufkhad [DB96], 4.78 by Kamathet al [KMPS94], and 5.19 reported by several authors. The easy 5.19 bound comesfrom observing that a �xed assignment t satis�es a random 3-literal clause withprobability 78 and hence t satis�es a random instance of 3{SAT with probability(78)cn. The expected number of assignments satisfying the random instance is thus2n(78)cn, and this (and hence the probability that the instance is satis�able) tendsto 0 as n ! 1 for c > log 87 2 = 5:191:::. (The argument also shows that forc < 5:19 the expected number of assignments satisfying a random instance growsexponentially with n. This may help explain the success of local search methodson satis�able instances.)The improved upper bounds given in [DB96, KKK96] are based on the ob-servation that if an instance � is satis�able, then some assignment t maximallysatis�es �, meaning t satis�es �, but
ipping the value of t on any single variablefrom false to true falsi�es �. Dubois and Boufkhad obtained the bound c� < 4:642by estimating the expected number of maximally satisfying assignments, which issigni�cantly smaller than the number of satisfying assignments. Kirousis et al in-dependently developed the same method, and by considering double
ips obtainedthe bound c� < 4:598 stated above.

10 STEPHEN A. COOK AND DAVID G. MITCHELLCuriously, direct arguments such as this have so far failed to give interestinglower bounds for the threshold. The known lower bounds result from analyzingspeci�c algorithms, as explained above.Attempts have also been made to construct a quantitative model of the tran-sition region based on empirical data. This also appears quite challenging (see[SK96, CA96]).3.2. WalkSAT performance near the threshold. Random instances ap-pear to be hardest when generated near the threshold ratio. DPLL and its variationsare hopelessly slow on many instances of random 3{SAT at this ratio when n is muchlarger than 400. However, Selman et al [SKC94] found that WalkSAT solves mostof the satis�able cases for much larger n. With n = 2000 variables, the best cur-rent estimate of the ratio at which 50% of formulas will be satis�able is aboutc = m=n = 4:24, or m = 8480 clauses. WalkSAT solved about 50% of the formulasthey generated at this ratio, in about one hour per formula on average. This sug-gests that WalkSAT found satisfying assignments for most of the satis�able instancesattempted in this di�cult region, which is a remarkable performance. Although itno doubt failed on some satis�able instances, we know of no other procedure thatwould succeed. 4. Average-Case CompletenessThe theory ofNP-completeness tells us that 3{SAT is as hard as any problem inNP, in the sense of worst-case complexity. It is reasonable to ask for a comparableresult in average-case complexity. Thus we want a distribution on 3{SAT instancesfor each length l which makes the problem complete in some average-case sense.The theory of average-case completeness tells us that such distributions exist, butthere is evidence that none of them is \natural".This theory was initiated by Levin [Lev86] and extensively developed by others(see [BCGL92] and [Gur91]). Traditionally it requires speci�cation of a globaldistribution to all instances of a problem D. Here we adapt the theory to followthe tradition in average-case analysis of algorithms, where one need only specify afamily of local distributions, i.e. for each l a distribution �l on instances of lengthl (see [MS95]).If D is a decision problem, then Dl denotes the restriction of D to inputsof length l. A randomized decision problem is a sequence hDl; �li, where D is adecision problem and �l is a probability distribution on instances of Dl . Such aproblem is in AvP (average P) i� some deterministic algorithm solves it in timepolynomial on average in the following technical sense: there exist � > 0 and abound B such that for all l Xjxj=l (T (x))�l �l(x) < B;where T (x) is the time required by the algorithm on instance x. It follows easilythat for any D 2 P and any sequence h�li, the sequence hDl; �li is in AvP.DistNP is the class of randomized decision problems hDl; �li, where D 2NP,and h�li is uniformly polytime computable.Completeness for DistNP requires a suitable notion of reduction. We sayhDl; �li reduces via f to hD0m; �0mi if; 1) x 2 D , f(x) 2 D0 for all D-instancesx, and 2) f does not map any set of instances with signi�cant �l-probability into

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 11an instance with very small �0m probability. One way to formalize condition 2) is:For every l and every set Y of Dl-instances which are all mapped by f to the sameDm-instance y, the ratio �l(Y)=�0m(y) is bounded by q(l), for some polynomial q.We say that the reduction is polytime if f is computable in polytime.Notice that DistNP does not correspond to NP in the same sense that AvPcorresponds to P, since a problem in DistNP is not necessarily allowed to be in\average NP", but must be in NP itself. The notion AvNP of average NP hasbeen de�ned, and Wang and Belanger [WB93] proved that any problem completeforDistNP is also complete for the larger class AvNP, provided that more general\polytime on average" reductions are allowed, as opposed to the strict polytimereductions de�ned above.Levin found a natural distribution for which the tiling problem is complete forDistNP with respect to polytime reductions. Thus if tiling with this distributionis in AvP, then all of DistNP (and in fact AvNP) is in AvP. A few other suchnatural examples have been found ([Gur91]), but very few compared to the vastnumber of NP-complete problems known. SAT is not among the examples, as wenow explain.Makowsky and Sharell [MS95] de�ne the class of negation-symmetric distribu-tions on SAT or k{SAT to be all those with the following property: If an instance I 0results from an instance I by replacing a particular literal with its negation through-out, then I and I 0 have equal probability. This includes all the random formulas wehave discussed here, and probably all those to be found in the literature. Extendingresults of Gurevich [Gur91] they showed that providedDEXP6=NEXP (a slightlystronger assumption than P6=NP, but nonetheless expected to be true) k{SAT isnotDistNP-complete under deterministic reductions for any of these distributions.On the other hand, 3{SAT is NP-complete, and hence every NP problem,including the tiling problem, is reducible to it via some deterministic polytimereduction. In fact, the reduction from tiling to 3{SAT can be made one-one witha polytime inverse, so this reduction applied to the distribution family makingtilingDistNP-complete will induce a distribution family making 3{SAT DistNP-complete. However this induced distribution will not be natural in any sense.Polytime and average polytime reductions are deterministic reductions. A no-tion of randomizing reduction has been de�ned, and examples given which are com-plete forDistNPwith respect to these reductions but (assumingDEXP6=NEXP)not with respect to deterministic reductions [VL88, Gur91]. Makowsky andSharell ([MS95], p90) suspect that their incompleteness result is due to the restric-tion to deterministic reductions. Thus a major open problem is to �nd a naturaldistribution for which SAT is DistNP-complete under randomizing reductions.5. Lower BoundsAssuming P 6= NP no correct algorithm for SAT can operate in polytime, andassumingAvP 6= AvNP no correct algorithm for SAT with a complete distributionfamily can operate in average polytime. Without making such assumptions, thebest we can hope for with current techniques is lower bound proofs which apply tospeci�c algorithms. In fact, no interesting unconditional lower bounds are known onthe performance of the incomplete methods (model �nders) described in section 2.2.However strong lower bounds are known on the performance of speci�c completemethods, but these only apply to their performance on unsatis�able instances, and

12 STEPHEN A. COOK AND DAVID G. MITCHELLresult from known lower bounds on the lengths of proofs for speci�c propositionalproof systems.The computation of either DP60 or DPLL on an unsatis�able input instancegives rise to a regular resolution proof for that instance whose number of lines isbounded by the number of steps in the computation. Hence the exponential lowerbound on regular resolution proofs [Tse70, Gal77, BA80] gives rise to worst-caseexponential lower bounds on the time required for both DP60 and DPLL, and theexponential lower bounds for general resolution [Hak85, Urq87] show that nosmarter use of resolution will help.From our point of view, the strongest lower bound for proof systems is dueto Chvatal and Szemeredi [CS88], since their bound yields an exponential lowerbound on the average-case performance of DP60 and DPLL. They show that for each�xed constant c there is � > 0 so that for random 3{SAT with m = cn clauses, theprobability that there exists a resolution refutation of size less than 2�n tends to 0 asn!1. An immediate corollary is that DP60 and DPLL take exponential time withhigh probability on random 3{SAT when c > 4:598, since random instances are thenvery likely unsatis�able (see section 3.1). Notice however that if c is not a constantand exceeds n2 then sub-linear length proofs almost surely exist [Fu95, MS95].The experimental �nding that random 3{SAT with large c is easy is not incon
ict with the exponential lower bound for large (constant) ratios, but only showsthat at a given n these are much easier than formulas in the transition region.Crawford and Auton studied the empirical scaling behavior of their implementationof a very re�ned version of DPLL, and found that the average solution cost grewroughly as 2n=19:5 near the transition region, and something like 2n=68 at higherratios [CA96].A slightly stronger proof system than resolution is the cutting plane system.Some work has been done using cutting planes in a SAT tester, for example [Hoo88].Recently, exponential worst-case lower bounds have also been given for cutting planeproofs [Pud96], but so far nothing comparable to the average-case resolution lowerbound of Chvatal and Szemeredi has been shown.Exponential lower bounds have not been shown for some more powerful proofsystems, such as Frege systems and extended Frege systems. A lower bound forextended Frege systems would yield a similar lower bound for any complete SATtester whose correctness can be proved using feasibly constructive methods [Coo75,Kra95]. 6. Hard Satis�able InstancesAs we mentioned, the known unconditional lower bounds apply only to hardunsatis�able instances, and furthermore existing model �nders perform remarkablywell on satis�able instances even near the di�cult threshold ratio on random 3{SAT(see section 3.2). It seems that the problem of generating random hard satis�ableinstances is related to a traditional problem in cryptography theory. More precisely,Russell Impagliazzo has pointed out that generating hard solved instances of 3{SATis equivalent to computing a one-way function, which in turn is equivalent to gen-erating pseudo-random numbers and private key cryptography [ILL89, Luby96].(It may be easier to generate hard satis�able instances than hard solved instances,but we have no insight on this.)

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 13The problem of generating hard solved instances can be explained as follows:Find a polytime function h which takes a string r (representing random bits) to apair h(r) = ht(r); �(r)i, where the assignment t(r) satis�es the formula �(r), andfor a random string r it is di�cult, given �(r), to �nd any satisfying assignmentfor �(r).The one-way function corresponding to the above h is the map which takes rto �(r). This function can be computed in polytime, but it is hard to invert: Ifgiven �(r) I could �nd any r0 mapping to �(r) (i.e. �(r0) = �(r)) then I have foundt(r0) which satis�es �(r), violating the assumption above.Conversely, suppose f : f0; 1g� ! f0; 1g� is a length-preserving one-way func-tion. Then f can be computed in polytime, but for a random x, given y = f(x), itis di�cult to �nd any x0 such that f(x0) = y. This f can be used to generate hardsolved instances of 3{SAT as follows.Since f is length preserving and polytime, for each n there is a polysize Booleancircuit Cn which takes the n input bits x1; :::; xn representing the string x to then output bits y1; :::; yn representing the string y = f(x). If the circuit has s gates,then we may introduce s new variables z1; :::; zs, one for each gate, and express thecorrectness of each gate by the conjunction of at most four 3-literal clauses, whichassert that the output of the gate is correct with respect to its inputs. (For eachgate computing a circuit output value yi, we should replace the variable zj for thatgate by the variable yi.) The conjunction of all such clauses is a formula �n in thex's, y's, and z's asserting the correctness of the circuit. Now given an n-bit stringa = a1:::an we can compute f(a) = b = b1:::bn and we can compute the formula�(a) = �n ^ y01 ^ ::: ^ y0n, where y0i is yi if bi = 1 and otherwise y0i is :yi. Further,we can compute the satisfying assignment t(a) = a1; :::; an; b1; :::; bn; c1; :::; cs to thevariables x1; :::; xn; y1; :::; yn; z1; :::; zs in �(a), where cj is the value of gate j whenthe inputs are a1; :::; an. Finally, we de�ne h(a) = ht(a); �(a)i. Notice that theformula �(a) can be computed from b (without knowledge of a), and if given �(a)any satisfying assignment can be found, then this assignment would give rise to astring a0 such that f(a0) = b.6.1. SAT challenge. Several conjectures on the di�culty of number-theoreticfunctions imply the existence of one-way functions, but the most basic such con-jecture is that factoring large integers is di�cult. A speci�c problem supposed tobe di�cult is: Given the product M = PQ of two random n-bit primes P and Q,�nd P and Q. A SAT instance would be an encoding of a boolean multiplier circuitcomputing the known product M from unknown inputs P and Q. Variables arethe bits of P and Q (the inputs to the circuit), together with outputs of the gatesof the circuit. Clauses assert the correct behavior of the gates, and assert that theoutputs of the circuit represent the given value of M . This problem di�ers frommost other benchmarks in that there is essentially a unique satisfying assignment.Challenge: Report the largest n for which your SAT solver can (consistently)�nd P and Q within one hour.Part of the challenge is to �nd a suitable multiplier circuit: not too complex,and probably not too deep (see for example [Weg], section 3.2).The state of the art for number-theoretic factoring methods seems to be aroundn ' 200 bits (about 60 decimal digits for each prime). We believe that the currentstate for the SAT encoding approach is very much less than this.

14 STEPHEN A. COOK AND DAVID G. MITCHELLReferences[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithmfor testing the truth of certain quanti�ed boolean formulas. Information ProcessingLetters, 8(3):121{123, March 1979.[Asp80] Bengt Aspvall. Recognizing disguised NR(1) instances of the satis�ability problem.Journal of Algorithms, 1:97{103, 1980.[BS96] Roberto J. Bayardo, Jr. and Robert Schrag. Using CSP look-back techniques to solveexceptionally hard SAT instances. In Proc. of the Second Int'l Conf. on Principlesand Practice of Constraint Programming, (Lecture Notes in Computer Science 1118),46-60, Springer, 1996.[BA80] Mordechai Ben-Ari. A simpli�ed proof that regular resolution is exponential. Infor-mation Processing Letters, 10(2):96{98, 1980.[BCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average casecomplexity. JCSS, 44, 193-219, 1992.[BAH+94] A. Beringer, G. Aschemann, H.H. Hoos, M. Metzger and A. Wei�. GSAT versus Sim-ulated Annealing. In Proc. ECAI-94, pages 130{134, 1994.[BFU93] A. Broder, A. Frieze, and E. Upfal. On the satis�ability and maximum satis�ability ofrandom 3-CNF formulas. In Proc. Fourth Annual ACM-SIAM Symposium on DiscreteAlgorithms, 1993.[CA96] J.M. Crawford and L.D. Auton. Experimental results on the cross-overpoint in random3-SAT. Arti�cial Intelligence, 81:31{57, 1996.[CCH+90] Vijaya Chandru, Collette R. Coullard, Peter L. Hammer, Miguel Monta~nez, and Xi-aorong Sun. On renamable horn and generalized horn functions. Annals of Mathemat-ics and Arti�cial Intelligence, pages 33{47, 1990.[CH91] Vijaya Chandru and John Hooker. Extended Horn sets in propositional logic. Journalof the ACM, 38(1): 205{221, 1991.[CF90] M. Chao and J. Franco. Probabilistic analysis of a generalization of the unit-clause lit-eral selection heuristics for the k satis�ability problem. Information Sciences, 51:289{314, 1990.[CR92] V. Chv�atal and B. Reed. Mick gets some (the odds are on his side). In Proc. of the33rd IEEE Symposium on the Foundations of Computer Science, Pittsburgh, 1992.[CS88] Va�sek Chv�atal and Endre Szemer�edi. Many hard examples for resolution. Journal ofthe ACM, 35(4):759{768, 1988.[CC92] Michele Conforti and G�erard Cornu�ejols. A class of logic problems solvable by linearprogramming. In Proc. of the 33rd IEEE Symposium on the Foundations of ComputerScience, Pittsburgh, 1992.[Coo71] Stephen Cook. The complexity of theorem proving procedures. In Proc. 3rd Ann.ACM Symp. on Theory of Computing, pages 151{158, New York, 1971. Associationfor Computing Machinery.[Coo75] Stephen Cook. Feasibly constructive proofs and the propositional calculus. In Proc.7th Ann. ACM Symp. on Theory of Computing, 83-97, 1975.[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.Communications of the ACM, 5:394{397, 1962.[DP60] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journalof the ACM, 7:201{215, 1960.[DR94] R. Dechter and I. Rish. Directional Resolution: The Davis-Putnam Procedure, Revis-ited. In Proc. KR-94, 134{145, 1994.[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis�ability ofpropositional Horn formulas. Journal of Logic Programming, 1(3):267{284, 1984.[DABC93] O. Dubois, P. Andre, Y. Boufkhad and J. Carlier. SAT versus UNSAT. In Cliques,Coloring, and Satis�ability: Second DIMACS Implementation Challenge, David S.Johnson and Michael A. Trick (eds.), Dimacs Series in Discrete Mathematics andComputer Science (26), American Mathematical Society, 1993.[DB96] O. Dubois, Y. Boufkhad. A General Upper Bound for the Satis�ability Threshold ofRandom r-SAT Formulae. Preprint, 1996. See also: Les lois de tout our rein, in Pourla Science, July 1995.[EIS76] S. Even, A. Itai, and A Shamir. On the complexity of timetable and multi-commodity
ow problems. SIAM Journal on Computing, 5(4), 1976.

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 15[FP83] J. Franco and M. Paull. Probabilistic analysis of the Davis Putnam procedure forsolving the satis�ability problem. Discrete Applied Math, 5:77{87, 1983.[FW97] J. Franco and R.P. Swamanithan. Average Case Results for Satis�ability AlgorithmsUnder the Random Clause Model. To appear in: Annals of Mathematics and Arti�cialIntelligence.[Fra86] John Franco. On the probabilisticperformanceof algorithms for the satis�ability prob-lem. Information Processing Letters, 23:103{106, August 1986.[Fre94] J.W. Freeman. Improvements to propositional satis�ability search algorithms., Doc-toral Dissertation, University of Pennsylvania, Philadelphia, PA, 1994.[FS92] A. Frieze and S. Suen. Analysis of three simple heuristics on a random instance ofk-SAT. Preprint, 1992. To appear in Journal of Algorithms.[Fu95] Xudong Fu. The complexity of the resolution proofs for the random set of clauses.Preprint, 1995.[Gal77] Zvi Galil. On the complexity of regular resolution and the Davis-Putnam procedure.Theoretical Computer Science, 4:23{46, 1977.[Goe92] A. Goerdt. A threshold for unsatis�ability. In Proc. of the 17th International Sympo-sium on Mathematical Foundations of Computer Science, Prague, August 1992.[Gol79] A. Goldberg. On the complexity of the satis�ability problem. Courant Computer Sci-ence Report No. 16., 1979. New York University.[GU89] Giorgio Gallo andGiampaoloUrbani. Algorithms for testing the satis�abilityof propo-sitional formulae. Journal of Logic Programming, 7:45{61, 1989.[Gu89] Jun Gu. Parallel algorithms and architectures for very fast search. Ph.D. Thesis, De-partment of Computer Science, University of Utah, 1989.[Gu92] Jun Gu. E�cient local search for very large-scale satis�ability problems. SIGARTBulletin, 3(1):8{12, 1992.[Gu93] Jun Gu. Local search for satis�ability problem. IEEE Transactions on Systems, Man,and Cybernetics, 23(4):1108{1129, July 1993.[Gur91] Yuri Gurevich. Average case completeness. JCSS 42,3, 346-398, 1991.[GW94] I.P. Gent and T. Walsh. The hardest random SAT problems. In Proceedings, KI-94,1994.[GW95] I.P. Gent and T. Walsh. Unsatis�ed variables in local search. In Proceedings, AISB-95,pages 73{85, 1995. (Appears as a the book entitledHybrid Problems, Hybrid Solutions,J. Hallam (Ed.), IOS Press, 1995.)[Hak85] A. Haken. The intractability of resolution.Theoretical Computer Science, 39:297{308,1985.[HK93] Steven Hampson and Dennis Kibler. Plateaus and plateau search in boolean satis�-ability problems: When to give up searching and start again. Workshop Notes: 2ndDIMACS Challenge, 1993.[Hoo88] J.N. Hooker. Resolution vs. cutting plane solution of inference problems: some com-putational experience, Operations Research Letters, 7(1):1{7, 1988.[HF90] J.N. Hooker and C. Fedjki. Branch-and-cut solution of inference problems in proposi-tional logic. Annals of Mathematics and Arti�cial Intelligence, 1:123{139, 1990.[HTL92] T.H. Hu, C.Y. Tang, and R.C.T. Lee. An average case analysis of a resolution prin-ciple algorithm in mechanical theorem proving. Annals of Mathematics and Arti�cialIntelligence, 6:235{252, 1992.[ILL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random number generation from one-way functions. Proc. 21st STOC, 1989, pp 12-24.[Iwa89] Kazuo Iwama. CNF satis�ability test by counting and polynomial average time. SIAMJournal on Computing, 18(2):385{391, 1989.[JAMS91] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by sim-ulated annealing: an experimental evaluation; part ii, graph coloring and numberpartitioning. Operations Research, 39(3):378{406, 1991.[JW90] Robert E. Jeroslow and Jinchang Wang. Solving propositional satis�ability problems.Annals of Mathematics and Arti�cial Intelligence, 1:167{187, 1990.[KKRR90] A.P. Kamath, N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. Computa-tional experiencewith an interior point algorithmon the satis�ability problem.Annalsof Operations Research, 25:43{58, 1990.

16 STEPHEN A. COOK AND DAVID G. MITCHELL[KMPS94] Anil Kamath, Rajeev Motwani, Krishna Palem, and Paul Spirakis. Tail bounds foroccupancy and the satis�ability threshold conjecture. In Proc. FOCS-94, 1994.[KKK96] L.M. Kirousis, E. Kranakis, and D. Krizanc. Approximating the unsatis�ability thresh-old of random formulas. Preprint, 1996.[KP92] Elias Koutsoupias and Christos H. Papadimitriou. On the greedy algorithm for satis-�ability. Information Processing Letters, 30:53{55, 1992.[Kra95] Jan Kraj�i�cek.Bounded Arithmetic, Propositional logic, and Complexity Theory, Cam-bridge, 1995.[Lar92] T. Larrabee. Test pattern generation using Boolean satis�ability. IEEE Transactionson Computer-Aided Design, pages 6{22, January 1992.[LT92] T. Larrabee and Y. Tsuji. Evidence for a satis�ability threshold for random 3CNFformulas. Technical Report UCSC-CRL-92-42, CRL, University of California, SantaCruz, November 1992.[Lev86] Leonid A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285{286,February 1986.[Lew78] Harry R. Lewis. Renaming a set of clauses as a horn set. Journal of the ACM,25(1):134{135, January 1978.[Luby96] Michael Luby. Pseudorandomness and Cryptographic Applications. Princeton Univer-sity Press, 1996.[MJPL90] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Solving large-scale constraintsatisfaction and scheduling problems using a heuristic repair method. In ProceedingsAAAI-90, pages 17{24, 1990.[MS95] Jahann A. Makowsky and Abraham Sharell. On average case complexity of SAT forsymmetric distribution. J. Logic Computat., 5(1):71{92, 1995.[ML96] David G. Mitchell and Hector J. Levesque. Some pitfalls for experimenters with ran-dom SAT. Arti�cial Intelligence, 81:111{125, 1996.[MSL92] D.G. Mitchell, B. Selman, and H.J. Levesque. Hard and easy distributions of SATproblems. In Proc. AAAI-92, San Jose, CA, 1992.[Pap91] Christos H. Papadimitriou.On selecting a satisfying truth assignment. In Proc. FOCS-91, pages 163{169, 1991.[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison{Wesley, 1994.[Pre93] D. Pretolani. Solving satis�ability problems: An algorithm implementation challenge?(extended abstract). Workshop notes, 2nd DIMACS Challenge, 1993.[Pud96] Pavel Pudl�ak. Lower bounds for resolution and cutting planes proofs and monotonecomputations. J. Symbolic Logic (to appear).[Pur90] P. Purdom. A survey of average time analyses of satis�ability algorithms. Journal ofInformation Processing, 13(4), 1990.[Sch96] Ingo Schiermeyer. Pure Literal Look Ahead: An O(1; 497n) 3-Satis�ability Algorithm(Extended Abstract). In: Workshop on the Satis�ability Problem, Technical Report,Siena, April 29-May3, 1996, J. Franco, G. Gallo, H. Kleine-B�uning, E. Speckenmeyer,C. Spera (Eds.), University of K�oln, 1996.[SAFS95] John Schlipf, Fred Annextein, John Franco and R.P. Swaminathan. On �nding solu-tions for extended Horn formulas. Information Processing Letters, 54:133-137, 1995.[SK93] Bart Selman and Henry Kautz. An empirical study of greedy local search for satis�a-bility testing. In Proc. AAAI-93, pages 46{51, 1993.[SKC94] Bart Selman, Henry Kautz, and Bram Cohen. Noise strategies for improving localsearch. In Proceedings, AAAI-94, pages 337{343, 1994.[SK96] Bart Selman and Scott Kirkpatrick. Critical behavior in the computational cost ofsatis�ability testing. Arti�cial Intelligence, 81:273{295, 1996.[SLM92] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hardsatis�ability problems. In Proceedings, AAAI-92, San Jose, CA, 1992.[SD89] J.C. Simon andO. Dubois. Number of solutions of satis�ability instances { applicationsto knowledge bases. Inter. J. of Pattern Recognition and A.I., 3(1):53{65, 1989.[SG90] R. Sosic and J. Gu. A PolynomialTime Algorithm for the N-Queens Problem.SIGARTBulletin, 1(3), 1990.[Sp93] WilliamM. Spears. Simulated annealing for hard satis�ability problems. In, WorkshopNotes from the 1993 DIMACS Challenge.

FINDING HARD INSTANCES OF THE SATISFIABILITY PROBLEM 17[Tse70] G.S. Tseitin. On the complexity of derivation in propositional calculus. In; Slisenko(Ed.), Studies in Constructive Mathematics and Mathematical Logic { Part II, A.O.,pages 115{125. Consultants Bureau, New York, 1970.[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209{219,January 1987.[VanG96] Allen Van Gelder. Personal Communication.[VL88] RamarathnamVenkatesan and Leonid A. Levin. Random instances of a graph coloringproblem are hard. Proc. 20th STOC, 217-222, 1988.[WB93] J. Wang and J. Belanger. On average P vs. average NP. In Complexity Theory {Current research (K. Ambos-Spies, S. Homer, U. Sch�oning, eds.), Cambridge Univer-sity Press, 1993, pp.47-67.[Weg] Ingo Wegener. The Complexity of Boolean Functions, Wiley and Teubner, 1987.Departmentof Computer Science, University of Toronto, Toronto, Ontario, M5S 3G4CANADAE-mail address: sacook@cs.toronto.eduDepartmentof Computer Science, University of Toronto, Toronto, Ontario, M5S 3G4CANADAE-mail address: mitchell@cs.toronto.edu

