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• LogicLogic
• Efficient satisfiability testing by 

backtracking searchbacktracking search
• Efficient satisfiability testing by local 

hsearch
• Applications



Powerful & practical reasoning algorithms search throughPowerful & practical reasoning algorithms search through 
space of partial or total truth assignments























































Don’t sweatDon t sweat 
the details: 
later we will 
see a much 

more 
efficient way 
of searching 

through 
model 
space!







Formal Computational Complexity
• SAT = Prototypical NP-complete problem:

– Given a Boolean formula, is there a assignment of g
truth values to the Boolean variables that makes it 
true?

– As hard as any problem where an answer can beAs hard as any problem where an answer can be 
verified in polynomial time

– Still NP-complete if formulas are restricted to 
Conjunctive Normal Form:Conjunctive Normal Form:

literals

(a v b v ~c)   &   (~a v c)     & (~b v c)

clauses







Expert System for Automobile 
Diagnosis

Expert System for Automobile 
DiagnosisDiagnosisDiagnosis

Knowledge Base:
GasInTank ∧ FuelLineOK ⊃ GasInEngineGasInTank ∧ FuelLineOK ⊃ GasInEngine
GasInEngine ∧ GoodSpark ⊃ EngineRuns
PowerToPlugs ∧ PlugsClean ⊃ GoodSparkg g p
BatteryCharged ∧ CablesOK ⊃ PowerToPlugs

Observed:
¬ EngineRuns,

GasInTank, PlugsClean, BatteryCharged
Prove:Prove:

¬ FuelLineOK ∨ ¬ CablesOK 



Solution by Forward ChainingSolution by Forward Chaining
Knowledge Base and Observations:

(¬ GasInTank ∨ ¬ FuelLineOK ∨ GasInEngine)(¬ GasInTank ∨ ¬ FuelLineOK ∨ GasInEngine)
(¬ GasInEngine ∨ ¬ GoodSpark ∨ EngineRuns)
(¬ PowerToPlugs ∨ ¬ PlugsClean ∨ GoodSpark)
(¬ BatteryCharged ∨ ¬ CablesOK ∨ PowerToPlugs)
(¬EngineRuns)
(GasInTank)(GasInTank)
(PlugsClean)
(BatteryCharged)

Negation of Conclusion:
(FuelLineOK)
(CablesOK)(CablesOK) 







Resolution ProofResolution Proof

DAG, where leaves are input clauses
Internal nodes are resolvantsInternal nodes are resolvants
Root is false (empty clause)

KB:
• If the unicorn is 

mythical, then it is

(¬ A ∨ H) (¬ H) (¬I ∨ H)

mythical, then it is 
immortal, 

• if it is not mythical, it is 
an animal

(M ∨ A) (¬ M ∨ I)(¬I)(¬A)
an animal

• If the unicorn is either 
immortal or an animal, 
then it is horned.

(¬ M)(M)

()

then it is horned.
Prove: the unicorn is 

horned.
()



THE CURIOUS INCIDENT OF THE 
DOG IN THE NIGHT

THE CURIOUS INCIDENT OF THE 
DOG IN THE NIGHTDOG IN THE NIGHTDOG IN THE NIGHT

A racehorse was stolen from a stable, and a bookmaker Fitzroy 
Simpson was accused.  Sherlock Holmes found the true thief by p y
reasoning from the following premises:

1. The horse was stolen by Fitzroy or by the trainer, John 
Straker.

2. The thief entered the stable the night of the theft.
3. The dog barks if a stranger enters the stable.
4. Fitzroy was a stranger.4. Fitzroy was a stranger.
5. The dog did not bark.

Create a resolution refutation proof, using the propositions:
thief fitzroy thief johnthief_fitzroy thief_john
entered_fitzroy entered_john
stranger_fitzroy stranger_john
barks



Effi i t L l S hEfficient Local Search
for Satisfiability Testingy g



Greedy Local Search for SAT: 
GSATGSAT

state = choose_start_state();
G ( )while ! GoalTest(state) do

state := arg min { h(s) | s in Neighbors(state) }
end
return state;

• start = random truth assignment
• GoalTest = formula is satisfied
• h = number of false (unsatisfied) clausesh  number of false (unsatisfied) clauses
• neighbors = flip one variable (from true to false, or from

false to true)



Smarter Noise StrategiesSmarter Noise Strategies 

• For both random noise and simulatedFor both random noise and simulated 
annealing, nearly all uphill moves are 
useless

• Can we find uphill moves that are more• Can we find uphill moves that are more 
likely to be helpful?

• At least for SAT we can• At least for SAT we can...



Random Walk for SATRandom Walk for SAT

• Observation: if a clause is unsatisfied atObservation: if a clause is unsatisfied, at 
least one variable in the clause must be 
different in any global solutiondifferent in any global solution

(A v ~B v C)
Suppose you randomly pick a variable• Suppose you randomly pick a variable 
from an unsatisfied clause to flip.  What is 
the probability this was a good choice?the probability this was a good choice?



Random Walk for SATRandom Walk for SAT

• Observation: if a clause is unsatisfied atObservation: if a clause is unsatisfied, at 
least one variable in the clause must be 
different in any global solutiondifferent in any global solution

(A v ~B v C)
Suppose you randomly pick a variable• Suppose you randomly pick a variable 
from an unsatisfied clause to flip.  What is 
the probability this was a good choice?the probability this was a good choice?

1Pr(good choice) ≥Pr(good choice)
clause length

≥



Random Walk Local SearchRandom Walk Local Search

state = choose_start_state();
while ! GoalTest(state) do

clause := random member { C | C is a clause of F and{ |
C is false in state }

var := random member { x | x is a variable in clause }
state[var] := 1 – state[var];state[var] :  1 state[var];

end
return state;



Properties of Random WalkProperties of Random Walk

• If clause length = 2:If clause length = 2: 
– 50% chance of moving in the right direction

Converges to optimal with high probability in– Converges to optimal with high probability in 
O(n2) time

50%50%

refelectingabsorbing reflecting

0 d - Hamming Distancen/2 n



Properties of Random WalkProperties of Random Walk

• If clause length = 2:If clause length = 2: 
– 50% chance of moving in the right direction

Converges to optimal with high probability in– Converges to optimal with high probability in 
O(n2) time

For any desired epsilon there is a

50%50%

refelectingabsorbing
For any desired epsilon, there is a 
constant C, such that if you run for 

Cn2 steps, the probability of 
success is at least 1-epsilon

0 d - Hamming Distancen/2 n

p



Properties of Random WalkProperties of Random Walk
• If clause length = 3: 

– 1/3 chance of moving in the right direction
– Exponential convergence

Compare pure noise: 1/(n Hamming distance) chance– Compare pure noise: 1/(n-Hamming distance) chance 
of moving in the right direction

• The closer you get to a solution, the more likely a noisy flip is 
bad

refelectingabsorbing

1/3 2/3

reflecting

50%50%1/3 2/3

0 d - Hamming Distancen/2 n



Greedy Random WalkGreedy Random Walk
state = choose_start_state();_ _ ()
while ! GoalTest(state) do

clause := random member { C | C is a clause of F and
C is false in state };C is false in state };

with probability noise do
var := random member { x | x is a variable in clause };

elseelse
var := arg x min { #unsat(s) | x is a variable in clause,

s and state differ only on x};
endend
state[var] := 1 – state[var];

end
t t treturn state;



Refining Greedy Random WalkRefining Greedy Random Walk

• Each flipEach flip
– makes some false clauses become true
– breaks some true clauses, that become false

• Suppose s1→s2 by flipping x.  Then:
#unsat(s2) = #unsat(s1) – make(s1,x) + break(s1,x)

• Idea 1: if a choice breaks nothing, it is very likely 
to be a good move

• Idea 2: near the solution, only the break count 
matters 
– the make count is usually 1



Walksat
state = random truth assignment;
while ! GoalTest(state) do

l d b { C | C i f l i t t }clause := random member { C | C is false in state };
for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else

with probability noise do
var := random member { x | x is in clause };{ | };

else
var := arg x min { break[x] | x is in clause };

endifendif
state[var] := 1 – state[var];

end
return state; Put everything inside of a restart loopreturn state; Put everything inside of a restart loop.

Parameters: noise, max_flips, max_runs



SAT Translation of N-QueensSAT Translation of N Queens

• At least one queen each row:At least one queen each row:
(Q11 v Q12 v Q13 v ... v Q18)
(Q21 v Q22 v Q23 v ... v Q28) O(N2) clauses(Q21 v Q22 v Q23 v ... v Q28)
...

• No attacks:

( )

No attacks:
(~Q11 v ~Q12)
(~Q11 v ~Q22) O(N3) clauses( Q Q )
(~Q11 v ~Q21)
...

O(N ) clauses



Demo:Demo:
Solving N-Queens with Walksat



Walksat TodayWalksat Today
• Hard random 3-SAT: 100,000 vars, 15 minutes

– Walksat (or slight variations) winner every year in 
“random formula” track of International SAT Solver 
Competition

– Backtrack search methods: 700 variables
• Certain kinds of structured problems (graph 

coloring Latin squares n-queens ) ≈ 30 000coloring, Latin squares, n queens, ...) ≈ 30,000 
variables
– But best systematic search routines better on certain 

other kinds of problems e g verificationother kinds of problems – e.g., verification
• Inspired huge body of research linking SAT 

testing to statistical physics (spin glasses)



Effi i t B kt k S hEfficient Backtrack Search
for Satisfiability Testingy g



Basic Backtrack Search for a 
Satisfying ModelSatisfying Model

Solve( F ): return Search(F, { });

Search( F, assigned ):
if all variables in F are in assigned thenif all variables in F are in assigned then

if evaluate(F, assigned) then return assigned;
else return FALSE;

choose unassigned variable x;
return Search(F, assigned U {x=0}) ||

S h(F i d U { 1})Search(F, assigned U {x=1});
end;

State Space:

All partial or complete assignments of truth values to 
variables



Propagating ConstraintsPropagating Constraints

• Suppose formula containsSuppose formula contains
(A v B v ~C)

and we set A=0and we set A=0.  
• What is the resulting constraint on the 

C?remaining variables B and C?
(B v ~C)

• Suppose instead we set A=1.  What is the 
resulting constraint on B and C?g

No constraint



Empty Clauses and FormulasEmpty Clauses and Formulas

• Suppose a clause in F is shortened until itSuppose a clause in F is shortened until it 
become empty.  What does this mean 
about F and the partial assignment?about F and the partial assignment?

F cannot be satisfied by any way of 
completing the assignment; must backtrackcompleting the assignment; must backtrack

• Suppose all the clauses in F disappear.  
What does this mean?What does this mean?

F is satisfied by any completion of the partial 
assignmentassignment



Unit PropagationUnit Propagation

• Suppose a clause in F is shortened toSuppose a clause in F is shortened to 
contain a single literal, such as

(A)( )
What should you do?

Immediately add the literal to assigned.Immediately add the literal to assigned.
Repeat if another single-literal clause 
appears.

• Applying resolution where one clause is a 
single literal is called unit propagation



DPLL
DPLL( F, assigned ):

while F has a unit clause (c) dowhile F has a unit clause (c) do
assigned = assigned U {c};
shorten clauses containing ~c;
d l t l t i idelete clauses containing c;

end
if F is empty then return assigned;
if F contains an empty clause then return FALSE;
choose an unassigned literal c; // variable and initial value
return Search(F U { (c) } assigned) ||return Search(F U { (c) }, assigned)   ||

Search(F U { (~c) }, assigned);
end;



Improving Efficiency: Clause 
L iLearning

• Idea: backtrack search can repeatedlyIdea: backtrack search can repeatedly 
reach an empty clause (backtrack point) 
for the same reasonfor the same reason

A

B B

C C

Example: Propagation from B=0 and C=0 leads to empty clause



Improving Efficiency: Clause 
L iLearning

• If reason was remembered then couldIf reason was remembered, then could 
avoid having to rediscover it

A

B B
I had better 

set C=1
C D

set C=1 
immediately!

Example: Propagation from B=0 and C=0 leads to empty clause



Improving Efficiency: Clause 
L iLearning

• The reason can be remembered by addingThe reason can be remembered by adding 
a new learned clause to the formula

A

B B
Set C=1 by 

unit
C D

unit 
propagation

learn (~B V ~C)

Example: Propagation from B=0 and C=0 leads to empty clause



Scaling UpScaling Up

• Clause learning greatly enhances theClause learning greatly enhances the 
power of unit propagation

• Tradeoff: memory needed for the learned• Tradeoff: memory needed for the learned 
clauses, time needed to check if they 
cause propagationscause propagations

• Clever data structures enable modern SAT 
l t illi f l dsolvers to manage millions of learned 

clauses efficiently



What is BIG? 

C id l ld B l S i fi bili (SAT) blConsider a real world Boolean Satisfiability (SAT) problem

I.e.,  ((not x_1) or x_7)
((not x_1) or x_6)

etc.

x_1, x_2, x_3, etc. our   Boolean variables
(set to True or False)(set to True or False)

Set x 1 to False ??_



10 pages later:

I.e., (x_177 or x_169 or x_161 or x_153 …

…

x_33 or x_25 or x_17 or x_9 or x_1 or (not x_185)) 

clauses / constraints are getting more interesting…

Note x_1  …



4000 pages later:

…



Finally, 15,000 pages later:y p g

Search space of truth assignments: HOW?

Current SAT solvers solve this instance in 
approx. 1  minute!



Demo: SatPlan



Progress in SAT SolversProgress in SAT Solvers

Instance Posit' 94

ssa2670-136 40,66s

Grasp' 96

1,2s

Sato' 98

0,95s

Chaff' 01

0,02s

bf1355-638 1805,21s

pret150 25 >3000s

0,11s

0,21s

0,04s

0,09s

0,01s

0,01sp e 50_ 5 3000s

dubois100 >3000s

aim200 2 0 no 1 >3000s

0, s

11,85s

0 01s

0,09s

0,08s

0s

0,0 s

0,01s

0saim200-2_0-no-1 >3000s

2dlx_..._bug005 >3000s

0,01s

>3000s

0s

>3000s

0s

2,9s

c6288 >3000s >3000s >3000s >3000s
Source: Marques Silva 2002


