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Motivation
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 Logical Reasoning needs sufficient information of the world to 
prove any assertion or reach any conclusion

 Agents never have access to the whole truth about their 
environment

 Agent may have incomplete or incorrect understanding of its 
environment

 Example: Agent under uncertainty

 Goal: Drive someone to the airport to catch a flight

 Plan A90: 

 leave home 90 mins before the flight departure

 Drive at a reasonable speed

 Fact: 

 Distance to airport is 15 miles



Example: Agent under Uncertainty
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 Agent can’t decide ‘Plan A90 will get us to the airport in 

time’

 Reaches weaker conclusion – ‘Plan A90 will get us to the 

airport in time as long as

 My car doesn’t break down or out of gas

 I don’t get into any accident

 There is no road blocking on the way

 The plane doesn’t leave early 

 … 
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 Need to build an uncertain-reasoning system

 Capture uncertain knowledge in an efficient way

 Reach rational decision even when there is not enough 

information to prove an action

 Expand our interpretation of P-> Q using probabilities

 introduce number to avoid categorical nature of binary logical 

values (true/false)

 ‘All birds fly’ to ‘95% of birds fly’



Non-Categorical Reasoning

 3 types of modification may be performed to make our 

standard logic flexible:

 Relax the strength of the quantifier

 for all x <=> for most x

 Our use of probabilities is objective, not subject to the 

interpretation or degrees of confidence

 Relax the applicability of the predicate

 everyone in our class is absolutely tall<=> everyone in our class 

is moderately tall

 Vague predicate, a person can be simultaneously both 

tall(strongly) and not tall(weakly)



 Relax our degree of belief in the sentence as a whole

 Everyone in this room has finished the AI project <=> I believe 

that everyone in this room has finished the AI project, but I am 

not very sure.

 We are dealing with uncertain knowledge, reflects individuals 

personal degree of belief, subjective probability

 All these 3 representation can work together:

 'I am pretty sure that most of the persons in the class is fairly 

tall' 

 connects all 3 approaches



Objective Probability

 A statistical interpretation =>frequency of occurrence of 
an event

 Requires repeatable experiments

 Doesn’t depend on subject’s interpretation

 Doesn’t depend on degrees of confidence

 Doesn’t need prior knowledge

 Example:

 What is the probability of head of an unbiased coin?

 Toss coin for 10,000 times

 Count number of heads = num_head

 P(head) = num_head/10,000 ≈ 0.5



Subjective Probability
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 An subjective interpretation => individual’s degrees of 

belief in the occurrence of an event

 Derives from observations of group of things in the world

 Evidence combines to achieve new confidence level in the 

belief (posterior probability) from the previous level 

(prior probability)

 Prior probability + Evidence = Posterior probability

 Example

 P(rain) = 0.2

 P(rain| grass is wet) = 0.8

 P(rain| grass is wet ^ rain) = 1.0

Prior probability



Basic Concepts of Probability 

Theory



The Axioms of Probability

 Probability of an event A , P(A) is a number expressing the 

chance that A will occur

 0 <= P(A) <= 1

 P(True) = 1

 P(False) = 0

 P(~A) = 1 - P(A)

 P(A U B) = P(A) + P(B) - P(A and B)
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Basic Notions of Probability
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 Unconditional/Prior Probability

 The probability that a proposition is true in the absence of any 

other information

P(Weather = Sunny) = 0.2 

 Joint Probability

 A table which specifies the probability of every combination of 

values for a set of random variables.

 P(Sunny, Cavity, Toothache)

sunny cavity toothache probability

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



Basic Notions of Probability
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 Conditional Probability

 P(A|B) – the probability that A occurs given that B occurs

P(A|B) = P(A ^ B) / P(B)

 Also written as the product rule:  P(A^B) = P(A|B)*P(B)

 Independence

 A and B are said to be independent exactly if 

P(A|B) = P(A)     or   P(B|A) = P(B)    or P(A ^ B) = P(A)*P(B)

(note:  these statements are equivalent.)

 Conditional Independence

 Two events A and B are conditionally independent given E if

P(A^B|E) = P(A|E)*P(B|E)



Basic Notions of Probability

 Bayes’ rule 

 P(B|A) = (P(A|B) * P(B)) / P(A)

 Usefulness:   causation knowledge is more frequent than 

diagnostic knowledge.

 Bayes’ rule with evidence

 P(B|A ^ E) = (P(A | B ^ E) * P(B | E)) / P( A | E)



Bayesian Network



Bayesian/Belief Network
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 A reasoning system –

 uses graph theory to reason with uncertainty 

 follows the laws of probability theory

 Definition: A graphical model that represents a set of 
random variables and their conditional dependencies by 
Directed Acyclic Graph (DAG)

 Graphical model = Probability theory + graph theory

 Syntax: 

 One node per random variable

 A directed link between one node to another if there is any 
dependency

 A conditional probability table (CPT) for each node given its 
parents: P (xi | Parents (Xi))



Example
 A topology of belief network 

 A burglar can set the alarm off

 An earthquake can set the alarm off

 The alarm can cause Mary to call

 The alarm can cause John to call

 Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Burglary Earthquake

Alarm

MaryCallsJohnCalls



Semantics

 Full joint distribution is defined as the product of the 

conditional distribution of each node

P (x1, … ,xn) = ∏i = 1 P (xi | Parents(Xi))

 CPT provides decomposed representation of joint 

distribution

 Explanation

P (x1, … ,xn) = P(xn| xn-1, … x1)P(xn-1, … x1)

= P(xn| xn-1, … x1)P(xn-1|xn-2… x1)…P(x2|x1)P(x1)

= ∏i = 1 P (xi |xi -1, … x1)

= ∏i = 1 P (xi | Parents(Xi))



Example

Burglary Earthquake

Alarm

MaryCallsJohnCalls

P (x1, … ,xn) = ∏i = 1 P (xi | Parents(Xi))

P(JohnCalls ^ MaryCalls ^ Alarm ^ Burglary ^ Earthquake) 

= P(JohnCalls|Alarm) x P(MaryCalls|Alarm) x P(Alarm|Burglary^Earthquake)

x P(Burglary) x P(Earthquake)



Construction of Belief Network

 Choose the set of relevant variables Xi that describe the 
domain

 Choose an ordering of variables X1, … ,Xn

 For i = 1 to n

 pick a variable Xi and add a node to the network for it

 select parents from X1, … ,Xi-1 such that P (Xi | Parents(Xi)) = P
(Xi | X1, ... Xi-1)

 define conditional probability table for Xi



Problem 1

What is the probability of the event that the alarm has sounded and 

no burglary but an earthquake has occurred and both Mary and John 

call?

J: JohnCalls

M:  MaryCalls

A:  Alarm

B:  Burglary

E: Earthquake

P(J ^ M ^ A ^ ~B ^ E) = P(J|A) x P(M|A) x P(A|~B^E) x P(~B) x P(E)

= 0.90 x 0.70 x 0.29 x 0.999 x 0.002 = 0.00036



Problem 2

What is the probability of the event that the alarm has sounded but 

neither a burglary nor an earthquake has occurred and John call and 

Mary didn’t call?

J: JohnCalls

M:  MaryCalls

A:  Alarm

B:  Burglary

E: Earthquake

P(J ^ ~M ^ A ^ ~B ^ ~E) = P(J|A) x P(~M|A) x P(A|~B^~E) x P(~B) x P(~E)

= 0.90 x 0.30 x 0.001 x 0.999 x 0.998 = 0.00027



Compactness of Bayesian Network

Suppose that the maximum number of variables on which any variable 

directly depends is k.  Then a Bayesian network can be specified by n*2^k 

numbers, as opposed to 2^n for the full joint distribution.   

Moreover, the full joint distribution can be computed from the 

Bayesian network.

AIMA Example:   n = 32, k = 5   →   960 vs  4bn

Compactness vs. Accuracy

Compactness and Node Ordering

Nodes for root causes should be added before the nodes they influence.



Exact Inference

Simple, intuitive algorithm:    

enumeration of joint distribution and Bayes' rule. 

What is P(S|G)?



Exact Inference

Simple, intuitive algorithm:    

enumeration of joint distribution and Bayes' rule. 

What is P(S|G)?

P(S|G) = P(S^G)/P(G)

P(S^G) = P(S^G^R) + P(S^G^~R)

P(G) = P(S^G) + P(~S^G)

P(~S^G) =P(S^G^R) + P(S^G^~R) 



Exact Inference

What is P(S|G)?

P(S|G) = P(S^G)/P(G)

P(S^G) = P(S^G^R) + P(S^G^~R)  = 0.00198+0.288 = .28998

P(G) = P(S^G) + P(~S^G)    = .28998 + 0.1584 = 0.44838

P(~S^G) =P(~S^G^R) + P(~S^G^~R)  = 0.1584 + 0

P(S^G^R)=P(S|R)P(G|S^R)P(R)  = (0.01)(0.99)(0.2) = 0.00198 

P(S^G^~R) = P(S|~R)P(G|S^~R)P(~R) =  (0.4)(0.9)(0.8) = 0.288

P(~S^G^R) = P(~S|R)P(G|~S^R)P(R) = (0.99)(0.8)(0.2) = 0.1584

P(~S^G^~R) = P(~S|~R)P(G|~S^~R)P(~R) = (0.6)(0.0)(0.8) = 0



Exact Inference

What is P(S|G)?

P(S|G) = P(S^G)/P(G)

0.6467

P(S^G) = P(S^G^R) + P(S^G^~R)  = 0.00198+0.288 = .28998

P(G) = P(S^G) + P(~S^G)    = .28998 + 0.1584 = 0.44838

P(~S^G) =P(~S^G^R) + P(~S^G^~R)  = 0.1584 + 0

P(S^G^R)=P(S|R)P(G|S^R)P(R)  = (0.01)(0.99)(0.2) = 0.00198 

P(S^G^~R) = P(S|~R)P(G|S^~R)P(~R) =  (0.4)(0.9)(0.8) = 0.288

P(~S^G^R) = P(~S|R)P(G|~S^R)P(R) = (0.99)(0.8)(0.2) = 0.1584

P(~S^G^~R) = P(~S|~R)P(G|~S^~R)P(~R) = (0.6)(0.0)(0.8) = 0



Exact Inference

 Simple, intuitive algorithm:    

 enumeration of joint distribution and Bayes' rule. 

What is P(S|G)... a lot of work!

Our “algorithm” has time complexity O(n*2^n). 

Using dynamic programming, we can get this down to linear 

time for well-behaved networks (polytrees), but the general 

case still requires exponential time O(2^n).  

The general case is NP-hard (even #P-hard), so exact 

inference in Bayesian networks is not always feasible 



Approximate Inference

Direct Sampling   (Wonky Demo)

Grab a probability for a specific row of Joint distribution

Rejection Sampling  (Wonky Demo)

Compute a conditional probability via repeated direct

sampling, rejecting the samples in which the evidence 

does not hold.

Error bounds: stddev(error) ~ 1/sqrt(N)

Problem:  rare occurrences



Approximate Inference

Likelyhood Weighting 

Compute a conditional probability, but generate only 

samples consistent with evidence. Weight these samples by their 

likelyhood, and compute . 

To generate a sample: 

Let w = 1.

For each variable X_i (i = 1, 2, ...)

If X_i is in the evidence set, set w = w * P(X_i) and X_i = t.

Otherwise Sample variable X_i

After assigning values to each variable, you have a weighted sample.

This can be repeated to generate N weighted-samples, where the total 

weight of the target samples when divided by the total weight of the 

samples yields the desired conditional probability.



Approximate Inference

Markov Chain Monte Carlo Simulation (MCMC)

Partition the variables into hidden (X) and evidence (E). 

Compute a “state” by randomly initializing all variables. 

Iteratively sample the hidden variables given, updating the state. 

(Keep the evidence variables fixed.)

Maintain an |X| length array N where N[i] is the number of times variable 

X_i was true. 

After desired number of runs, compute the ratio as before.

From AIMA: The sampling process settles into a 

“dynamic equilibrium” in which the long-run fraction of time spent

in each state is exactly proportional to its posterior probability. 



Extensions

Arbitrary Discrete Random Variables (We used boolean)

Continuous random variables: discretization & pdfs.

Hybrid models: continuous and discrete variables



Applications / Real-world Examples

Computational Biology

Medicine:  Diagnosis

Document Classification

Information Retrieval 

Finance

Law
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