
CHAPTER SIX
FUNCTIONS

CSC 161: The Art of Computer Programming
Matt Post (grad TA; guest lecturer)

10/26/2009

Monday, October 26, 2009

COURSE STATUS

2
Monday, October 26, 2009

COURSE STATUS

2

• Programming assignment 6: Graphics (part 2)

• Due 10 AM October 31 (this Saturday)

• To be completed in teams of two

Monday, October 26, 2009

COURSE STATUS

2

• Programming assignment 6: Graphics (part 2)

• Due 10 AM October 31 (this Saturday)

• To be completed in teams of two

• Midterm exam

• should have grades by this Wednesday

Monday, October 26, 2009

COURSE STATUS

2

• Programming assignment 6: Graphics (part 2)

• Due 10 AM October 31 (this Saturday)

• To be completed in teams of two

• Midterm exam

• should have grades by this Wednesday

• For Wednesday

• make sure you’ve read Chapter 6

Monday, October 26, 2009

3

Head of an Old Peasant Woman. Pieter Brueghel the Elder c. 1565.

Monday, October 26, 2009

Imagine you’re a peasant woman in 19th century England. Use this painting to seed your imagination
(ignoring the fact that this is a 16th century peasant woman).

MAKING BREAD (CA. 200 YEARS AGO)

4
Monday, October 26, 2009

This is just part of your tedious quotidian routine: making bread. If only there was a way out of it.

MAKING BREAD (CA. 200 YEARS AGO)

• Wake up at 3 AM, put on bear skin or whatever

4
Monday, October 26, 2009

This is just part of your tedious quotidian routine: making bread. If only there was a way out of it.

MAKING BREAD (CA. 200 YEARS AGO)

• Wake up at 3 AM, put on bear skin or whatever

• Sift the bugs out of a few cups of flour, mix with some
water and yeast and a little honey

4
Monday, October 26, 2009

This is just part of your tedious quotidian routine: making bread. If only there was a way out of it.

MAKING BREAD (CA. 200 YEARS AGO)

• Wake up at 3 AM, put on bear skin or whatever

• Sift the bugs out of a few cups of flour, mix with some
water and yeast and a little honey

• Knead until you can no longer bear the pain in your
wrists (you have carpal tunnel)

4
Monday, October 26, 2009

This is just part of your tedious quotidian routine: making bread. If only there was a way out of it.

MAKING BREAD (CA. 200 YEARS AGO)

• Wake up at 3 AM, put on bear skin or whatever

• Sift the bugs out of a few cups of flour, mix with some
water and yeast and a little honey

• Knead until you can no longer bear the pain in your
wrists (you have carpal tunnel)

• Set aside to rise; meanwhile, bring in some wood and use
hot coals from yesterday to start a fire (walk to the
neighbor’s house if your coals died)

4
Monday, October 26, 2009

This is just part of your tedious quotidian routine: making bread. If only there was a way out of it.

MAKING BREAD (CA. 200 YEARS AGO)

• Wake up at 3 AM, put on bear skin or whatever

• Sift the bugs out of a few cups of flour, mix with some
water and yeast and a little honey

• Knead until you can no longer bear the pain in your
wrists (you have carpal tunnel)

• Set aside to rise; meanwhile, bring in some wood and use
hot coals from yesterday to start a fire (walk to the
neighbor’s house if your coals died)

• et cetera ad nauseum

4
Monday, October 26, 2009

This is just part of your tedious quotidian routine: making bread. If only there was a way out of it.

5
Monday, October 26, 2009

There was a way out of it! If you were rich (like Queen Victoria), you could...

• Wake up at 3 AM, put on bear skin or whatever

• Sift the bugs out of a few cups of flour, mix with some
water and yeast and a little honey

• Knead until you can no longer bear the pain in your
wrists (you have carpal tunnel)

• Set aside to rise; meanwhile, bring in some wood and use
hot coals from yesterday to start a fire (walk to the
neighbor’s house if your coals died)

• et cetera ad nauseum

6
http://tinyurl.com/yz4mphd

Monday, October 26, 2009

order a servant to do it!

6

• Wake up at 3 AM, put on bear skin or whatever

• Sift the bugs out of a few cups of flour, mix with some
water and yeast and a little honey

• Knead until you can no longer bear the pain in your
wrists (you have carpal tunnel)

• Set aside to rise; meanwhile, bring in some wood and use
hot coals from yesterday to start a fire (walk to the
neighbor’s house if your coals died)

• et cetera ad nauseum
Make bread!

http://tinyurl.com/yz4mphd

Monday, October 26, 2009

order a servant to do it!

http://tinyurl.com/yzn2quw
7
Monday, October 26, 2009

Instead of doing all those little jobs herself, the Queen just tells the servant to do it, and the servant
delivers.

http://tinyurl.com/yzn2quw
7

Make bread!

Monday, October 26, 2009

Instead of doing all those little jobs herself, the Queen just tells the servant to do it, and the servant
delivers.

http://tinyurl.com/yzn2quw
7

Make bread!

Monday, October 26, 2009

Instead of doing all those little jobs herself, the Queen just tells the servant to do it, and the servant
delivers.

EXTENDING THE ANALOGY

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

EXTENDING THE ANALOGY

• The Queen

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

EXTENDING THE ANALOGY

• The Queen

• can specify necessary or more detailed information

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

EXTENDING THE ANALOGY

• The Queen

• can specify necessary or more detailed information

• “Make rye bread!”	
 	
 	
 	
 make_bread(‘rye’)

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

EXTENDING THE ANALOGY

• The Queen

• can specify necessary or more detailed information

• “Make rye bread!”	
 	
 	
 	
 make_bread(‘rye’)

• “Make rye bread, quickly!”	
 make_bread(‘rye’,’fast’)

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

EXTENDING THE ANALOGY

• The Queen

• can specify necessary or more detailed information

• “Make rye bread!”	
 	
 	
 	
 make_bread(‘rye’)

• “Make rye bread, quickly!”	
 make_bread(‘rye’,’fast’)

• does not know (or care) about the details of how the
task is accomplished

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

EXTENDING THE ANALOGY

• The Queen

• can specify necessary or more detailed information

• “Make rye bread!”	
 	
 	
 	
 make_bread(‘rye’)

• “Make rye bread, quickly!”	
 make_bread(‘rye’,’fast’)

• does not know (or care) about the details of how the
task is accomplished

• can ask for anything to be sent back

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

EXTENDING THE ANALOGY

• The Queen

• can specify necessary or more detailed information

• “Make rye bread!”	
 	
 	
 	
 make_bread(‘rye’)

• “Make rye bread, quickly!”	
 make_bread(‘rye’,’fast’)

• does not know (or care) about the details of how the
task is accomplished

• can ask for anything to be sent back

• “Make tens loaves of rye!”
loaves_list = make_bread(‘rye’,’fast’,10)

8
Monday, October 26, 2009

Modern programming languages (like Python) make Queens of us all. Instead of painstakingly
specifying the pieces of a task over and over again, we simply define a function, give it some
parameters to allow it’s behavior to vary slightly, and the receive the results of its work.

9

WHY?
ELIMINATING
REDUNDANCY

Monday, October 26, 2009

We now discuss details of how functions help eliminate wasteful and error-prone repetition.

10
http://www.cwac.net/forests/forest.JPG

eliminating redundancy

Monday, October 26, 2009

You are a programmer on a low-budget B-grade horror movie. Your job is to create the sound of the
monster making its way through the forest to the hapless cottage guests.

10
http://www.cwac.net/forests/forest.JPG

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

eliminating redundancy

Monday, October 26, 2009

You are a programmer on a low-budget B-grade horror movie. Your job is to create the sound of the
monster making its way through the forest to the hapless cottage guests.

10
http://www.cwac.net/forests/forest.JPG

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

eliminating redundancy

Monday, October 26, 2009

You are a programmer on a low-budget B-grade horror movie. Your job is to create the sound of the
monster making its way through the forest to the hapless cottage guests.

10
http://www.cwac.net/forests/forest.JPG

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

eliminating redundancy

Monday, October 26, 2009

You are a programmer on a low-budget B-grade horror movie. Your job is to create the sound of the
monster making its way through the forest to the hapless cottage guests.

10
http://www.cwac.net/forests/forest.JPG

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

...

eliminating redundancy

Monday, October 26, 2009

You are a programmer on a low-budget B-grade horror movie. Your job is to create the sound of the
monster making its way through the forest to the hapless cottage guests.

11

eliminating redundancy

Monday, October 26, 2009

Instead of typing the guttural utterances over and over, we make a function that does it...

11

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

eliminating redundancy

Monday, October 26, 2009

Instead of typing the guttural utterances over and over, we make a function that does it...

12

eliminating redundancy

prints

Monday, October 26, 2009

and call that function three times, which yields the same output.

12

noise()
noise()
noise()

eliminating redundancy

prints

Monday, October 26, 2009

and call that function three times, which yields the same output.

12

noise()
noise()
noise()

eliminating redundancy

prints

blah blah blargh
blah blah blargh
blargh
blah blah blargh
blah blah blargh
blargh
blah blah blargh
blah blah blargh
blargh

Monday, October 26, 2009

and call that function three times, which yields the same output.

13

eliminating redundancy

1
2

3

4

5

6

7

8

Monday, October 26, 2009

In the main body of the code (left box), each time the noise() function is invoked, execution proceeds
into the body of that function until it reaches the end. Then execution returns to where it left off.

13

noise()
noise()
noise()

eliminating redundancy

1
2

3

4

5

6

7

8

Monday, October 26, 2009

In the main body of the code (left box), each time the noise() function is invoked, execution proceeds
into the body of that function until it reaches the end. Then execution returns to where it left off.

13

noise()
noise()
noise()

eliminating redundancy

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’1

2

3

4

5

6

7

8

Monday, October 26, 2009

In the main body of the code (left box), each time the noise() function is invoked, execution proceeds
into the body of that function until it reaches the end. Then execution returns to where it left off.

13

noise()
noise()
noise()

eliminating redundancy

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

1
2

3

4

5

6

7

8

Monday, October 26, 2009

In the main body of the code (left box), each time the noise() function is invoked, execution proceeds
into the body of that function until it reaches the end. Then execution returns to where it left off.

13

noise()
noise()
noise()

eliminating redundancy

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

1
2

3

4

5

6

7

8

Monday, October 26, 2009

In the main body of the code (left box), each time the noise() function is invoked, execution proceeds
into the body of that function until it reaches the end. Then execution returns to where it left off.

14

capitalizing on similarity

http://www.potteryhouse.co.uk/photogallery/spring2006/DSCF7434.JPG
http://tinyurl.com/yzkldcf

Monday, October 26, 2009

Now imagine that we want to vary the monster’s noise as it approaches its target. We still have a lot of
redundancy, except for the third gurgle in each block.

14

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

capitalizing on similarity

http://www.potteryhouse.co.uk/photogallery/spring2006/DSCF7434.JPG
http://tinyurl.com/yzkldcf

Monday, October 26, 2009

Now imagine that we want to vary the monster’s noise as it approaches its target. We still have a lot of
redundancy, except for the third gurgle in each block.

14

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘BLAARGH’

capitalizing on similarity

http://www.potteryhouse.co.uk/photogallery/spring2006/DSCF7434.JPG
http://tinyurl.com/yzkldcf

Monday, October 26, 2009

Now imagine that we want to vary the monster’s noise as it approaches its target. We still have a lot of
redundancy, except for the third gurgle in each block.

14

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘BLAARGH’

print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘BLAAAARGH’

capitalizing on similarity

http://www.potteryhouse.co.uk/photogallery/spring2006/DSCF7434.JPG
http://tinyurl.com/yzkldcf

CENSORED

Monday, October 26, 2009

Now imagine that we want to vary the monster’s noise as it approaches its target. We still have a lot of
redundancy, except for the third gurgle in each block.

15

def noise(final):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final

def noise():
print ‘blah blah blargh’
print ‘blah blah blargh’
print ‘blargh’

eliminating redundancy

PARAMETERIZING THE FUNCTION

Monday, October 26, 2009

By adding a formal parameter to the noise() function specification, we allow it to vary what is printed
on the third line.

16

eliminating redundancy

prints

Monday, October 26, 2009

Now we can achieve the same result by passing in a different argument each time we call noise(). An
argument is what we call the value being passed to the function from the caller’s perspective. When
we do this, the value that is passed into the function is bound to the value of the formal parameter
listed in the function’s definition.

16

noise(‘blargh’)

eliminating redundancy

blah blah blargh
blah blah blargh
blargh

prints

Monday, October 26, 2009

Now we can achieve the same result by passing in a different argument each time we call noise(). An
argument is what we call the value being passed to the function from the caller’s perspective. When
we do this, the value that is passed into the function is bound to the value of the formal parameter
listed in the function’s definition.

16

noise(‘blargh’)

noise(‘BLAARGH’)

eliminating redundancy

blah blah blargh
blah blah blargh
blargh

prints

blah blah blargh
blah blah blargh
BLAARGH

Monday, October 26, 2009

Now we can achieve the same result by passing in a different argument each time we call noise(). An
argument is what we call the value being passed to the function from the caller’s perspective. When
we do this, the value that is passed into the function is bound to the value of the formal parameter
listed in the function’s definition.

16

noise(‘blargh’)

noise(‘BLAARGH’)

noise(‘BLAAAARGH’)

eliminating redundancy

CENSORED

blah blah blargh
blah blah blargh
blargh

prints

blah blah blargh
blah blah blargh
BLAARGH
blah blah blargh
blah blah blargh
BLAAAARGH

Monday, October 26, 2009

Now we can achieve the same result by passing in a different argument each time we call noise(). An
argument is what we call the value being passed to the function from the caller’s perspective. When
we do this, the value that is passed into the function is bound to the value of the formal parameter
listed in the function’s definition.

17

def noise(final = ‘blargh’):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final

def noise(final):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final

eliminating redundancy

USING A DEFAULT VALUE

Monday, October 26, 2009

A small note: formal parameters can be given default values, so that if the function is called without
any argument, the parameter will receive this default value.

18

eliminating redundancy

prints (the same)

Monday, October 26, 2009

Here we achieve the same effect by relying on the default value of the noise() function’s parameter,
“blargh”.

18

noise()

eliminating redundancy

prints (the same)

blah blah blargh
blah blah blargh
blargh

Monday, October 26, 2009

Here we achieve the same effect by relying on the default value of the noise() function’s parameter,
“blargh”.

18

noise()

noise(‘BLAARGH’)

eliminating redundancy

prints (the same)

blah blah blargh
blah blah blargh
blargh
blah blah blargh
blah blah blargh
BLAARGH

Monday, October 26, 2009

Here we achieve the same effect by relying on the default value of the noise() function’s parameter,
“blargh”.

18

noise()

noise(‘BLAARGH’)

noise(‘BLAAAARGH’)

eliminating redundancy

CENSORED

prints (the same)

blah blah blargh
blah blah blargh
blargh
blah blah blargh
blah blah blargh
BLAARGH
blah blah blargh
blah blah blargh
BLAAAARGH

Monday, October 26, 2009

Here we achieve the same effect by relying on the default value of the noise() function’s parameter,
“blargh”.

19

def noise(final = ‘blargh’):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final
return len(final)

def noise(final = ‘blargh’):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final

return values

RETURN VALUES

Monday, October 26, 2009

Every function returns a value to the caller when it is finished executing. If you don’t specify a return
value (using the return statement), the default value of None is used. Here, we return the length of
the final monster noise as a gross approximation of how scary the noise is (we are admittedly
stretching this analogy).

20

return values

prints

Monday, October 26, 2009

Now that noise() returns a value, we capture it by assigning it to a variable and printing it out.

20

noise()
noise(‘BLAARGH’)
scary_factor =
 noise(‘BLAAAARGH’)

print scary_factor

return values

prints

Monday, October 26, 2009

Now that noise() returns a value, we capture it by assigning it to a variable and printing it out.

20

noise()
noise(‘BLAARGH’)
scary_factor =
 noise(‘BLAAAARGH’)

print scary_factor

return values

prints

9

Monday, October 26, 2009

Now that noise() returns a value, we capture it by assigning it to a variable and printing it out.

21

return values

RETURN VALUES

Monday, October 26, 2009

As we noted before, previously the noise() function did not return any values, so the return value
defaulted to None. This was okay, since we were not using the return value, but in general it’s a good
idea to explicitly list the return value you’d like to use, even if you don’t plan on using it, to avoid
confusion at a later date.

21

return values

def noise(final = ‘blargh’):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final
return len(final)

RETURN VALUES

Monday, October 26, 2009

As we noted before, previously the noise() function did not return any values, so the return value
defaulted to None. This was okay, since we were not using the return value, but in general it’s a good
idea to explicitly list the return value you’d like to use, even if you don’t plan on using it, to avoid
confusion at a later date.

21

return values

def noise(final = ‘blargh’):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final
return len(final)

def noise(final = ‘blargh’):
print ‘blah blah blargh’
print ‘blah blah blargh’
print final

returns None

RETURN VALUES

Monday, October 26, 2009

As we noted before, previously the noise() function did not return any values, so the return value
defaulted to None. This was okay, since we were not using the return value, but in general it’s a good
idea to explicitly list the return value you’d like to use, even if you don’t plan on using it, to avoid
confusion at a later date.

22

WHY?
READABILITY

(MODULARITY)

Monday, October 26, 2009

Functions also improve the readability of code, which helps with long-term (and even short-term)
maintainability of the code. This is a real issue with huge software projects (like, say, Microsoft Office)
that have tens of millions of lines of code, but is also an issue with smaller projects. It can be hard to
keep a whole program in your head, or remember why you made certain decisions.

23

readability

What does this code do?

Monday, October 26, 2009

The square() function helps you remember what you meant by x * x (since square() has a quick human
interpretation). That’s not that useful here, where an experienced programmer can read both of them
in equal time.

23

x is an integer
value = x * x

readability

What does this code do?

Monday, October 26, 2009

The square() function helps you remember what you meant by x * x (since square() has a quick human
interpretation). That’s not that useful here, where an experienced programmer can read both of them
in equal time.

23

x is an integer
value = x * x

x is an integer
value = square(x)

readability

What does this code do?

Monday, October 26, 2009

The square() function helps you remember what you meant by x * x (since square() has a quick human
interpretation). That’s not that useful here, where an experienced programmer can read both of them
in equal time.

24

readability

What does this code do?

Monday, October 26, 2009

It’s more of an issue here. It might take you a minute to recognize that the code in the first box
computes the length of a hypotenuse of a right triangle (the Euclidean distance between two points on
a plane). If you put that code in a function instead, the meaning would be immediate.

24

p1 and p2 are Point objects
value = math.sqrt(square(p2.getX() - p1.getX())

+ square(p2.getY() - p1.getY())

readability

What does this code do?

Monday, October 26, 2009

It’s more of an issue here. It might take you a minute to recognize that the code in the first box
computes the length of a hypotenuse of a right triangle (the Euclidean distance between two points on
a plane). If you put that code in a function instead, the meaning would be immediate.

24

p1 and p2 are Point objects
value = math.sqrt(square(p2.getX() - p1.getX())

+ square(p2.getY() - p1.getY())

p1 and p2 are Point objects
value = Euclidean_distance(p1,p2)

readability

What does this code do?

Monday, October 26, 2009

It’s more of an issue here. It might take you a minute to recognize that the code in the first box
computes the length of a hypotenuse of a right triangle (the Euclidean distance between two points on
a plane). If you put that code in a function instead, the meaning would be immediate.

25

readability

What does this code do?

Monday, October 26, 2009

Even if you don’t know what the prime factorization of an integer is, you know what’s going on in Box
2, which wouldn’t be the case for Box 1.

25

x is an integer
list = []
for i in range(2,x+1):
	
 while x % i == 0:
	
 	
 list.append(i)
	
 	
 x /= i
return list

readability

What does this code do?

Monday, October 26, 2009

Even if you don’t know what the prime factorization of an integer is, you know what’s going on in Box
2, which wouldn’t be the case for Box 1.

25

x is an integer
list = []
for i in range(2,x+1):
	
 while x % i == 0:
	
 	
 list.append(i)
	
 	
 x /= i
return list

readability

What does this code do?

x is an integer
factors = prime_factors(x)

Monday, October 26, 2009

Even if you don’t know what the prime factorization of an integer is, you know what’s going on in Box
2, which wouldn’t be the case for Box 1.

26

TOPIC:
VARIABLES
AND SCOPE

Monday, October 26, 2009

ANATOMY OF A FUNCTION

27

def myFunc(param1,param2):
var1 = var2 = 1
#
do some stuff
#
return var1,var2

Monday, October 26, 2009

A function definition tells you how a function will work when it is called. A function has a name and a
list of comma-separated parameters (these parameters are bound to the actual parameters when the
function is called). You can have as many parameters as you like, and as few as zero.

ANATOMY OF A FUNCTION

27

def myFunc(param1,param2):
var1 = var2 = 1
#
do some stuff
#
return var1,var2

information in
(as many args as

you want)

Monday, October 26, 2009

A function definition tells you how a function will work when it is called. A function has a name and a
list of comma-separated parameters (these parameters are bound to the actual parameters when the
function is called). You can have as many parameters as you like, and as few as zero.

ANATOMY OF A FUNCTION

28

def myFunc(param1,param2):
var1 = var2 = 1
#
do some stuff
#
return var1, var2

Monday, October 26, 2009

A function also has internal variables. These variables are not visible outside the function. The
only way for a function to communicate with its caller is with its return values.

ANATOMY OF A FUNCTION

28

def myFunc(param1,param2):
var1 = var2 = 1
#
do some stuff
#
return var1, var2

information in
(as many args as

you want)

variables
(visible only in
the function)

Monday, October 26, 2009

A function also has internal variables. These variables are not visible outside the function. The
only way for a function to communicate with its caller is with its return values.

ANATOMY OF A FUNCTION

29

def myFunc(param1,param2):
var1 = var2 = 1
#
do some stuff
#
return var1,var2

Monday, October 26, 2009

You can return as many variables as you’d like. On the calling side, you assign them like this:

x,y = myFunc(arg1,arg2)

Remember that the value of arg1 (on the calling side) is assigned to param1, and the value of arg2 is
assigned to param2. myFunc knows nothing about variables on the calling side unless they are passed
in and assigned to its named parameters

ANATOMY OF A FUNCTION

29

def myFunc(param1,param2):
var1 = var2 = 1
#
do some stuff
#
return var1,var2

information in
(as many args as

you want)

information out
(as many return
values as you

want)

variables
(visible only in
the function)

Monday, October 26, 2009

You can return as many variables as you’d like. On the calling side, you assign them like this:

x,y = myFunc(arg1,arg2)

Remember that the value of arg1 (on the calling side) is assigned to param1, and the value of arg2 is
assigned to param2. myFunc knows nothing about variables on the calling side unless they are passed
in and assigned to its named parameters

CALLING A FUNCTION

30

def square(n):
	
 n2 = n * n
	
 return n2

def main():
	
 x = input(“value? “)
	
 print x, “squared is”, square(x)

Monday, October 26, 2009

Here we see the difference between the function definition (for square()) and it being called. When
main calls square(x), the value of x in main() is assigned to the formal parameter n in square().

CALLING A FUNCTION

30

def square(n):
	
 n2 = n * n
	
 return n2

def main():
	
 x = input(“value? “)
	
 print x, “squared is”, square(x)

n is a formal
parameter (part of
the function definition)

Monday, October 26, 2009

Here we see the difference between the function definition (for square()) and it being called. When
main calls square(x), the value of x in main() is assigned to the formal parameter n in square().

CALLING A FUNCTION

30

def square(n):
	
 n2 = n * n
	
 return n2

def main():
	
 x = input(“value? “)
	
 print x, “squared is”, square(x)

n is a formal
parameter (part of
the function definition)

when square(x) is
called, the value of
x (the actual
parameter is
assigned to n)

Monday, October 26, 2009

Here we see the difference between the function definition (for square()) and it being called. When
main calls square(x), the value of x in main() is assigned to the formal parameter n in square().

SOME IMPORTANT NOTES

31
Monday, October 26, 2009

SOME IMPORTANT NOTES

31

• function arguments are passed by value

• this means that the value of the variable is passed, not
the variable itself

• so if the function changes the value of the variable, the
caller won’t see the changes

• the caller and the callee may both have different names
for the value; neither knows the names the other uses
(or cares)

Monday, October 26, 2009

32

SUMMARY

Monday, October 26, 2009

32

SUMMARY

• Scope

• All variables used by a function must be (a) declared inside
the function or (b) passed in as arguments

• All variables declared in a function cease to exist afterward

Monday, October 26, 2009

32

SUMMARY

• Scope

• All variables used by a function must be (a) declared inside
the function or (b) passed in as arguments

• All variables declared in a function cease to exist afterward

• Pass by value

• Any modifications to arguments are lost

Monday, October 26, 2009

32

SUMMARY

• Scope

• All variables used by a function must be (a) declared inside
the function or (b) passed in as arguments

• All variables declared in a function cease to exist afterward

• Pass by value

• Any modifications to arguments are lost

• Communication

• In (via passed arguments) and out (via return value(s))

Monday, October 26, 2009

33

EXAMPLES

Monday, October 26, 2009

See annotated python examples (separate).

