
Solving Bayesian Networks by Weighted Model Counting

Tian Sang, Paul Beame, and Henry Kautz
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{sang,beame,kautz}@cs.washington.edu

Abstract

Over the past decade general satisfiability testing algorithms
have proven to be surprisingly effective at solving a wide
variety of constraint satisfaction problem, such as planning
and scheduling (Kautz and Selman 2003). Solving such NP-
complete tasks by “compilation to SAT” has turned out to
be an approach that is of both practical and theoretical in-
terest. Recently, (Sanget al. 2004) have shown that state
of the art SAT algorithms can be efficiently extended to the
harder task ofcountingthe number of models (satisfying as-
signments) of a formula, by employing a technique calledfor-
mula caching. This paper begins to investigate the question
of whether “compilation to model-counting” could be a prac-
tical technique for solving real-world #P complete problems.
We describe an efficient translation from Bayesian networks
to weightedmodel counting, extend the best model-counting
algorithms to weighted model counting, develop an efficient
method for computing all marginals in a single counting pass,
and evaluate the approach on computationally challenging
reasoning problems.

Introduction
In recent years great strides have been made in the devel-
opment of efficient satisfiability solvers. Programs such as
zChaff (Zhanget al. 2001) and Berkmin (Goldberg and
Novikov 2002) are routinely used in industry and academia
to solve difficult problems in hardware verification, plan-
ning, scheduling, and experiment design (Kautz and Selman
2003). Such practical success is quite surprising, since all
known complete SAT algorithms run in worst-case exponen-
tial time, a situation unlikely to change, given that satisfia-
bility testing is NP-complete. Although these solvers are
all based on the original DPLL backtracking SAT procedure
(Daviset al. 1962), they incorporate a number of techniques
— in particular, non-chronological backtracking (Dechter
1990), clause learning (Bayardo Jr. and Schrag 1997;
Marques-Silva and Sakallah 1996) and variable selection
heuristics (Cook and Mitchell 1997) — that tremendously
improve performance.

Any backtracking SAT algorithm can be trivially extended
to one that counts the number of satisfying assignments
by simply forcing it to backtrack whenever a solution is
found. Such a simple approach, however, is infeasible for
all but the smallest problem instances. Building on previ-
ous work on model-counting by (Bayardo Jr. and Schrag
1997) and theoretical work on formula-caching proof sys-
tems (Majercik and Littman 1998; Beameet al. 2003;

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Bacchuset al. 2003a), the creators of Cachet (Sanget al.
2004) built a system that scales to problems with thousands
of variables by combining clause learning, formula-caching,
and decomposition into connected components.

Model-counting is complete for the complexity class #P,
which also includes problems such as computing the per-
manent of a Boolean matrix and performing inference in
Bayesian networks. The power of programs such as Ca-
chet raises the question of whether various real-world #P
problems can be exactly solved in practice by translation
to model-counting and the application of a general model-
counting algorithm. This paper provides initial evidence that
the answer is affirmative: such a translation approach can
indeed be effective for interesting classes of hard problems
that cannot be solved by previously known exact methods.

This paper examines the problem of computing the poste-
rior probability of a query given evidence in a Bayesian net-
work. Such Bayesian inference is well known to be #P com-
plete (Roth 1996), and both Bayesian inference and #SAT
are instances of a more general counting problem called
“sum-product” (Dechter 1999; Bacchuset al. 2003a). How-
ever, there has been little previous work onexplicitly trans-
lating Bayesian networks to instances of #SAT. (Littman
1999) briefly sketches a reduction, and (Darwiche 2002;
Chavira et al. 2004) describe a method for encoding a
Bayesian network as a set of propositional clauses, where
certain variables are associated with the numeric values that
appear in the original conditional probability tables. We
employ a translation from Bayesian networks to weighted
model-counting problem that is similar but smaller both in
terms of the number of clauses and the total sum of the
lengths of all clauses. We also describe the relatively mi-
nor modifications to Cachet that are required to extend it to
handle weighted model-counting.

Many approaches to Bayesian inference, such as join tree
algorithms (Spiegelhalter 1986), calculate the marginals of
all variables in one pass. A translation approach, therefore,
would be at a serious disadvantage, if such a calculation re-
quired a separate translation and query foreachvariable. We
therefore further extended our model-counting algorithm so
that all marginals can be computed efficiently in one pass. In
addition to calculating the number of models which satisfy
a formula, the extended algorithm calculates, for each vari-
able, the number of satisfying models in which that variable
is true. These additional statistics can be kept with usually
insignificant overhead.

We present experimental results on three families of com-
putationally challenging Bayesian networks, grid networks,
plan recognition problems, and diagnostic networks. These



domains exhibit high density and tree-width, features that
are problematic for many previous approaches. Our exper-
iments show that as problem size and the fraction of deter-
ministic nodes increases, the translation approach comes to
dominate both join tree and previous state of the art condi-
tioning algorithms.

Related Work
As (Sanget al. 2004) demonstrate, Cachet is currently
the fastest model-counting system available. Its backtrack-
ing DPLL-style search is essentially a form of reasoning
by conditioning (Dechter 1999). We now briefly compare
the operation of the Cachet-based model-counting approach
(MC) with similar conditioning algorithms, in particular re-
cursive conditioning (RC) (Darwiche 2001; Allen and Dar-
wiche 2003), value elimination (VE) (Bacchuset al. 2003b),
and classical cutset conditioning (CC) (Dechter 1990).

The basic idea of MC, RC, and VE is to to recursively de-
compose a problem (break it into disconnected components)
by branching on variables, though only MC works on CNF
encodings. The basic idea of CC is to simplify (not necessar-
ily decompose) a problem so that it contains no loops. RC
always branches on (sequences) of variables that partition
a problem; CC always branches on a variable that breaks a
loop; while MC and VE can branch on any variable chosen
heuristically. RC, CC and VE determine a static variable
ordering before branching begins, while MC pick variables
dynamically. MC, RC, and VE cache the results of evaluated
subproblems. MC and VE use a dynamic cache management
strategy; while RC tries to allocate enough space to cache all
subproblems, but if that is not available, only caches a ran-
dom fraction of all subproblems. For MC only, cache hits
can occur between any subproblems which correspond to the
same CNF formula, even if they are derived from different
substructures of the original problem. Finally, only MC and
VE cache inconsistent subsets of assigned variables (learned
clauses, or nogoods) as well as subproblems, but they differ
in details of nogood(clause) learning and caching.

Encoding Bayesian Networks
Boolean Bayesian Networks

i
i

i
i

-

-? ?

do-work get-tired

finish-work have-rest

p(D)
0.5

D p(G)
True 0.7
False 0.2

D p(F )
True 0.6
False 0.1

F G p(H)
True True 1
True False 0.5
False True 0.4
False False 0

Figure 1: The work-rest Bayesian Network

We illustrate the approach with the 4 node Bayesian net-
work in Fig. 1. Fig. 2 shows the encoding for this example.
We use two types of variables:chancevariables that encode
entries in CPTs andstatevariables for the values of nodes.
Each row of each CPT has an associated chance variable
whose weight is the probability given in the True column

State variables:G, F , H
Chance variables (weights in parentheses):
at do-work:d (0.5)
at get-tired:g1 (0.7),g0 (0.2)
at finish-work:f1 (0.6),f0 (0.1)
at have-rest:h10 (0.5),h01 (0.4)
clauses for node get-tired
(¬d,¬g1, G)(¬d, g1,¬G)(d,¬g0, G)(d, g0,¬G)
clauses for node finish-work
(¬d,¬f1, F )(¬d, f1,¬F )(d,¬f0, F )(d, f0,¬F )
clauses for node have-rest
(¬F,¬G, H)(¬F,G,¬h10,H)(¬F,G, h10,¬H)
(F,¬G,¬h01,H)(F,¬G, h01,¬H)(F,G,¬H)

Figure 2: Variables and clauses for the work-rest Bayesian
Network

of that row of the CPT. Source nodes have only one row
in their CPTs so their state variables are superfluous and we
identify them with the corresponding chance variables. Each
CPT row yields two clauses which determine the weight of
the node’s value assignment as a function of the parent node
values and the weight of the CPT entry. For example, at
the CPT of node get-tired, when its parent do-work is True,
the conditions are equivalent to the following two clauses:
(¬d ∨ ¬g1 ∨G) and(¬d ∨ g1 ∨ ¬G). For a CPT entry with
value 0 or 1, as in rows 1 and 4 of the CPT for have-rest,
the value of the node is fully determined by its parents and
we encode the implication using one clause without using a
chance variable.

General Bayesian Networks
Now we consider the more general case of encoding
multiple-valued nodes. As in Figure 3, suppose that the net-
work has only two nodes: a Boolean node do-work and a
3-valued node get-tired with values Low, Medium, High.

i i-
do-work get-tired

p(D)
0.5

D p(Low) p(Medium) p(High)
True 0.2 0.4 0.4
False 0.6 0.3 0.1

Figure 3: A Bayesian network example with a multiple val-
ued node.

To encode the states of node get-tired, we use 3 variables,
GL, GM , andGH , and 4 constraint clauses to ensure that
exactly one of these variables is True. A chance variable for
a CPT entry has a weight equal to the conditional probability
that the entry is True given that no prior variable in the row is
True. For example, for the first row in the CPT for get-tired,
we add two chance variables:a andb with the weight ofa set
to 0.2 and the weight ofb set to 0.4

1−0.2 = 0.5. The last entry
in the row does not need a chance variable. For this row we
get three clauses:(¬D ∨ ¬a ∨GL), (¬D ∨ a ∨ ¬b ∨GM ),
and(¬D ∨ a ∨ b ∨GH).
Turning all such propositions into clauses and with the ad-
ditional constraints that state variables are exclusive, the en-
coding for the example with a multiple-valued node is shown
in Fig. 4. In general, if a node can take onk values,k − 1
chance variables are added for each row in its CPT.



State variables:GL, GM , GH
Chance variables (weights in parentheses):
at do-work:D (0.5)
at get-tired:a (0.2),b (0.5),c (0.6),d (0.75)
clauses for node get-tired
(¬GL,¬GM )(¬GM ,¬GH)(¬GM ,¬GH)(GL, GM , GH)
(¬D,¬a,GL)(¬D, a,¬b, GM )(¬D, a, b, GH)
(D,¬c,GL)(D, c,¬d, GM )(D, c, d,GH)

Figure 4: Variables and clauses for the example in Fig. 3

Weighted Model Counting

Algorithm 1 BasicWeightedModelCounting
BWMC(φ)
// returns the weight of the CNF formulaφ

if φ is empty, return 1
if φ has an empty clause, return 0
select a variablev in φ to branch
return BWMC(φ|v=0)× weight(−v)+

BWMC(φ|v=1)× weight(+v)

Basic Weighted Model Counting (BWMC) is a simple
recursive DPLL-style algorithm that for our Bayesian net-
work encoding will use two types of variables: chance
variables withweight(+v) + weight(−v) = 1 and un-
weighted state variables to which we imputeweight(+v) =
weight(−v) = 1. Theweightof a (partial) variable assign-
ment is the product of weights of the literals in that assign-
ment. If s is a total assignment satisfyingφ write s |= φ.
The weight of a formulaφ is

∑
s|=φ weight(s). The follow-

ing is immediate.
Lemma 1. The result returned by BWMC(φ) for a CNF for-
mulaφ is weight(φ).

A legal instantiationof a Bayesian networkN is a com-
plete value assignment to the Bayesian network nodes that
has non-zero probability. Any legal instantiationI of N im-
mediately yields a partial assignmentπ(I) of the state vari-
ables of the CNFφ encodingN .
Lemma 2. If φ is the encoding of Bayesian networkN with
legal instantiationI then
p(I) =

∑
s|=φ and s extends π(I) weight(s),

wherep(I) is the likelihood ofI.

Proof. Fix any legal instantiationI of the Bayes networkN .
The partial assignmentπ = π(I) will assigntrue to all state
variables corresponding to values assigned byI. It remains
to assign truth values to the chance variables in the CPTs;
We define this partπ in each such CPT separately. Given
instantiationI there is a unique associated entry in each of
the CPTs inN ; the values of the immediate predecessors
determines the row, and the value of the node determines
the column. If that column is not the last column, there will
be an associated chance variable;π will assign true to that
variable andfalse to all prior variables in that row. If that
column is the last column, there will not be an associated
chance variable butπ will assignfalseto all variables in that
row. The remaining chance variables in the CPT will be
unassigned.

By our definition ofφ the weight of the portion ofπ in the
CPT is equal to the probability of the associated entry in the

CPT. It is also easy to check that all the clauses defined for
the nodeV of N to which the CPT is associated are satisfied
by π. Every variablev that is not assigned a value inπ is
a chance variable ofφ and is therefore a primary variable
in the weighted model counting algorithm; this means that
weight(+v) + weight(−v) = 1 and thus the total weight
of all total assignmentss that extendπ is equal to the weight
of π which is the product of the weights of the portion of
π in each associated CPT. This is exactly equal toP (I) by
definition.

The reverse direction is also easy to check: Any satisfying
assignments for φ must extend some partial assignmentπ
as defined above. Sinces satisfies the exclusive clauses of
π, precisely one state variable associated with each node is
assigned value true. As above, the values of these state vari-
ables determine an associated entry in each CPT. The form
of the clauses defined for the CPT in each row will force the
assignment to the chance variables in the row to be of the
form of π above.

Theorem 3. If φ is the encoding of a Bayesian networkN
and C is a constraint onN , BWMC (φ ∧ C) returns the
likelihood of the networkN with constraintC.

Proof. By Lemma 1, BWMC(φ ∧ C) computes the
weighted sum of solutions. By Lemma 2, this is equal to
the sum of the likelihoods of those instantiations that sat-
isfy C, which by enumeration is indeed the likelihood of the
constrained Bayes network.

Therefore, ifφ is the CNF encoding of a Bayesian net-
work, a general query P(Q|E) on that network can be an-
swered by BWMC(φ∧Q∧E)

BWMC(φ∧E) . We should emphasize that
it supports queries and evidence in arbitrary propositional
form, not available by any other exact inference methods.

Weighted Cachet: Optimized Weighted Model Counting
BWMC above is a generalization of exact model counting
for #SAT in which the weights are no longer constrained to
be 1

2 . To provide an optimized implementation of weighted
model counting, we have modified Cachet, the fastest exact
model-counting system available, which is built on top of
zChaff (Zhanget al. 2001). Cachet combines unit propa-
gation, clause learning, non-chronological backtracking and
component caching, and can take advantage of a variety of
dynamic branching heuristics (Sanget al. 2005).

Weighted Model Counting for All Marginals
On inference we frequently want to calculate marginal prob-
abilities of all variables. The algorithm MarginalizeAll
shows how BWMC can be extended to do this in the con-
text of unit propagations. The vectorMarginals has an
entry for each variable inφ and is passed by reference,
while LMarginals and RMarginals are corresponding
local vectors storing the marginals computed by the recur-
sive calls on left and right subtrees. When MarginalizeAll
returns, the resultLW +RW isweight(φ), andMarginals
contains the weighted marginals — the real marginals multi-
plied byweight(φ). The marginals for variables found dur-
ing the recursive calls must be multiplied by the weight of
the unit propagations for those branches. Those variables in
φ that disappear from a branch without having been explic-
itly set have their marginals for that branch set to their origi-
nal positive weight (multiplied by the weight of the branch).



Algorithm 2 MarginalizeAll
MarginalizeAll(φ,Marginals)
// returns weight of formulaφ
// all weighted var marginals stored in vectorMarginals

if φ is empty, return 1
if φ has an empty clause, return 0
select a variablev in φ to branch
UP (φ,−v) =unit propagations resulted fromφ|v=0

UP (φ,+v) =unit propagations resulted fromφ|v=1

InitializeV ector(LMarginals, 0)
InitializeV ector(RMarginals, 0)
LW = MarginalizeAll(φ|UP (φ,−v), LMarginals)

×weight(UP (φ,−v))
RW = MarginalizeAll(φ|UP (φ,+v), RMarginals)

×weight(UP (φ,+v))
for each varx in φ|UP (φ,−v)

LMarginals[x] × = weight(UP (φ,−v))
for each varx in φ|UP (φ,+v)

RMarginals[x] × = weight(UP (φ,+v))
for each varx in UP (φ,−v)

if x is in positive form
thenLMarginals[x] = LW

elseLMarginals[x] = 0
for each varx in UP (φ,+v)

if x is in positive form
thenRMarginals[x] = RW

elseLMarginals[x] = 0
for each varx in φ but not inUP (φ,−v) ∪ φ|UP (φ,−v)

LMarginals[x] = LW × weight(+x)
for each varx in φ but not inUP (φ,+v) ∪ φ|UP (φ,+v)

RMarginals[x] = RW × weight(+x)
Marginals = SumV ector(LMarginals, RMarginals)
returnLW + RW

Our experiments were performed using an extension of
this algorithm that works with component caching, clause
learning and non-chronological backtracking as used in Ca-
chet. This requires caching both the weight and the vector
of marginals for each component and can use considerably
more space than Cachet’s weighted model counting. In ad-
dition, combining the marginals when the residual formula
consists of several components is somewhat more compli-
cated. In our experiments, when the problem fits in memory,
computing all marginals is only about 10% — 40% slower
than computing only the weight of the formula.

Experimental Results
We compared Cachet against state-of-the-art algorithms for
exact Bayesian inference on benchmark problems from three
distinct domains. The competing approaches are (i) the
join tree algorithm, as implemented in Netica (Norsys Soft-
ware Corp., http://www.norsys.com); (ii) recursive con-
ditioning (RC) as implemented in SamIam version 2.2
(http://reasoning.cs.ucla.edu/samiam/); and value elimina-
tion as implemented in Valelim (Bacchuset al. 2003b).

We deliberately selected benchmark problems that are in-
trinsically hard because they are highly structured and con-
tain many logical dependencies between variables. We do
not claim that Cachet is always, or even usually, superior
to others. (In particular, on problems with small tree-width,
the join tree approach is likely to be much faster.) We sim-
ply claim that these are non-trivial, challenging problems,

Grid networks, deterministic ratio = 0.5
size Join Tree RC Val. Elim. Cachet

10× 10 0.02 0.88 2.0 7.3
12× 12 0.55 1.6 15.4 38
14× 14 21 7.9 87 419
16× 16 X 104 20861 (6) 890
18× 18 X 2126 X 13111
20× 20 X X X X

Grid networks, deterministic ratio = 0.75
size Join Tree RC Val. Elim. Cachet

10× 10 0.02 0.87 0.15 0.30
12× 12 0.47 1.5 1.4 1.0
14× 14 20 15 8.3 4.7
16× 16 227 (3) 93 71 39
18× 18 X 1751 1053 (9) 81
20× 20 X 24026 (7) 94997 (5) 248
22× 22 X X X 1300
24× 24 X X X 9967 (7)

Grid networks, deterministic ratio = 0.9
size Join Tree RC Val. Elim. Cachet

10× 10 0.02 0.87 0.02 0.06
12× 12 0.61 1.5 0.06 0.13
14× 14 17 11 0.23 0.23
16× 16 259 102 0.55 0.47
18× 18 X 1151 1.9 1.4
20× 20 X 44675 (6) 13 1.7
22× 22 X X 31 4.9
24× 24 X X 84 4.5
26× 26 X X 8010 (7) 14
30× 30 X X X 108
34× 34 X X X 888
38× 38 X X X 4133

Figure 5: Median runtimes in seconds of join tree (Netica),
recursive conditioning (SamIam), value elimination (Vale-
lim), and model counting (Cachet) on 10 examples of grid
networks at each size. A number in parenthesis indicates
only that many out of 10 were solved in 48 hours; X indi-
cates that none were solved due to memory out or time out.

which contain natural patterns of structure and are of inter-
est on their own to the probabilistic reasoning community.

We also note that our current implementation of Cachet,
unlike the other solvers, does not perform any relevancy
reasoning before answering a query, which hurts it when a
query can be answered by consulting only a small portion of
a network. The grid network domain is in fact deliberately
designed so that everything is relevant to the query.

Grid Networks
Our first problem domain is grid networks. The variables of
anN ×N grid network are denotedXi,j for 1 ≤ i, j ≤ N .
Each nodeXi, j has parentsXi−1,j andXi,j−1, when those
indices are greater than zero. ThusX1,1 is a source andXn,n
is a sink. Given CPTs for nodes, the problem is to compute
the marginal probability of the sinkXn,n. The fraction of
the nodes that are assigned deterministic CPTs is a param-
eter, thedeterministic ratio. The CPTs for such nodes are
randomly filled in with 0 or 1; in the remaining nodes, the
CPTs are randomly filled with values chosen uniformly in
the interval(0, 1).

Problems were generated in DNE(for Netica etc.) and
in BIF format, and then converted, as described before, to



problem vars Join Tree RC Val. Elim. Cachet
4-step 165 0.16 8.3 0.03 0.03
5-step 177 56 36 0.04 0.03
tire-1 352 X X 0.68 0.12
tire-2 550 X X 4.1 0.09
tire-3 577 X X 24 0.23
tire-4 812 X X 25 1.1
log-1 939 X X 24 0.11
log-2 1337 X X X 7.9
log-3 1413 X X X 9.7
log-4 2303 X X X 65
log-5 2701 X X X 388

Figure 6: Running time in seconds on plan recognition prob-
lems. The timing for Val. Elim is the average time to query
a single marginal; for the other algorithms, the total time to
compute all marginals. X indicates the solver halted due to
out-of-memory or did not complete with 48 hours.

the CNF encoding for Cachet. Fig. 5 summarizes the re-
sults. Experiments were run on Linux servers, each with
dual 2.8GHz processors and 4GB of memory.

Not surprisingly, join tree can only solve the smallest in-
stances, because it runs out of space due to large cliques
in the triangulated graph. Recursive conditioning provides
the best performance on graphs that are 50% deterministic
up to size 18, but on larger problems at higher determin-
istic ratios is outperformed by both value elimination and
model counting.1 At 90% deterministic nodes, Cachet scales
to much larger problems than other methods, consistently
solving problems with 1,444 variables (38 × 38), while the
largest problem solved by the competing methods contains
576 variables (26× 26).

Plan Recognition
The second domain consists of strategic plan recognition
problems. Suppose we are watching a rational agent, and
want to predict what he or she will do in the future. Fur-
thermore, we know the agent’s goals, and all the actions the
agent can perform. What can we infer about the probabil-
ity of the agent performing any particular action? Such plan
recognition problems commonly arise in strategic situations,
such as military operations.

We formalize the problem as follows: We are given
a planning domain described in the form of deterministic
STRIPS operators, an initial state, and a set of goals to hold
at a specified time in the future. The agent can do anything
that is consistent with achieving the goals. Our task is to
compute the marginal probability that the agent performs
each fully-instantiated action at each time slice.

We generated a set of such plan recognition problems
of various sizes in several underlying planning domains
by modifying the Blackbox planning as satisfiability sys-
tem (Kautz and Selman 1999). Cachet could compute the
marginals directly by counting the models of the CNF en-
coding of the planning problems. For the other solvers, we
modified Blackbox so that it generated DNE format. Non-
symmetric logical constraints were encoded by introducing
conflict variables (Pearl 1988). For example,p ⊃ q can be

1A newer version of SamIam, not yet distributed at the time of
this submission, promises to provide improved performance due to
a significantly altered implementation of recursive conditioning.

size = 50+50, ratio = 0.1, 10 instances each entry
prior Join Tree RC Cachet
0.05 1.9 3.5 1.4
0.1 6 2.5 1.0
0.2 4 3.4 3.4

size = 60+60, ratio = 0.1, 10 instances each entry
prior Join Tree RC Cachet
0.05 52 (5) 5.7 (2) 1.7
0.1 46 (3) 33 (3) 3.9
0.2 45 (5) 60 (4) 54

size = 70+70, ratio = 0.1, 10 instances each entry
prior Join Tree RC Cachet
0.05 X X 12
0.1 X X 60
0.2 X X 136
size = 100+100, 10 instances each entry, Cachet
prior ratio=0.1 ratio=0.2 ratio=0.3
0.05 3705 (7) 7.9 0.077
0.1 98617 (6) 13 0.45
0.2 150572 (4) 6034 (7) 43

Figure 7: Median runtime on DQMR networks in seconds.
Numbers in parenthesis is the number of examples solved if
less than 10. X indicates memory-out or time-out.

encoded by adding a variablec with parentsp andq, where
the CPT forc says it is trueiff p is true andq is false, and
finally asserting¬c in the evidence.

Fig. 6 summarizes the results. We queried for all
marginals using join tree, recursive conditioning, and model
counting. As noted in the table, because the implementation
we used for value elimination can only query a single node
at a time, we instead measured the average run time over
a selection of 25 non-trivial queries. The “tire” and “log”
problems are based instances from the Tireworld and Logis-
tics domains in the Blackbox distribution. The 4-step and
5-step are small Logistics instances created for this paper.

Model counting handily outperforms the other methods
on these problems. Join tree quickly runs out of memory,
and recursive conditioning’s static value ordering only al-
lows it solve the smallest instances. Value elimination is the
only alternative that is competitive, which is consistent with
the fact that the algorithm is, as described in the related work
section, similar in many respects to Cachet. We hypothesize
that Cachet’s added power in this domain comes from its use
of clause learning and more general component caching.

DQMR Networks
Our final class of test problems is an abstract version of the
QMR-DT medical diagnosis Bayesian networks (Shweet al.
1991). Each problem is given by a two layer bipartite net-
work in which the top layer consists of diseases and the bot-
tom layer consists of symptoms. If a disease may result a
symptom, there is an edge from the disease to the symptom.
In the CPTs for DQMR (unlike those of QMR-DT) a symp-
tom is completely determined by the diseases that cause it;
i.e., it is modeled as an OR rather than a noisy OR of its
inputs. As in QMR-DT, every disease has an independent
prior probability.

For our experiments, we varied the numbers of diseases
and symptoms from 50 to 100 and chose the edges of the bi-
partite graph randomly, with each symptom caused by four



randomly chosen diseases. The problem was to compute
the marginal probabilities for all the diseases given a set of
consistent observations of symptoms. The size of the obser-
vation set varied between 10% to 30% of all symptoms.

Fig. 7 summarizes the results for join tree, recursive con-
ditioning, and model counting with Cachet for computing all
marginals. Although all methods were capable of quickly
solving problems with 50 symptoms, both join tree and RC
failed on more than half the instances of size60 and every
instance of size70 and above.

Discussion & Conclusions
We have provided the first evidence that compiling Bayesian
networks to CNF model counting problems is not only a the-
oretical exercise, but in many cases a practical way to solve
challenging inference problems. Such compilation approach
allows us to immediately leverage techniques used in the
state-of-the-art SAT and model counting engines, such as
fast constraint propagation, clause learning, dynamic vari-
able branching heuristics, component caching.

We have presented a general translation from Bayesian
networks into weighted model counting on CNF, and also
noted that many probabilistic problems, such as the plan
recognition benchmarks discussed above, can also be di-
rectly represented and solved in CNF.

It is important to note that we do not attempt to argue that
compilation and model counting replaces proven approaches
such as the join tree algorithm. Rather, it is a complemen-
tary approach, which is particularly suitable for problems
with complex structure that does not decompose into small
cliques, but where many of the dependencies between vari-
ables are entirely or partially deterministic. In such cases,
the efficient logical machine underlying model counting pro-
grams like Cachet stands a good chance of quickly reducing
the problem into small subproblems.

Finally, our overview of related work argued that other
recent algorithms for Bayesian inference, and in particular,
recursive conditioning and value elimination, are quite sim-
ilar to model counting, and differ mainly in the details of
caching and variable branching. It would not be surpris-
ing if all the techniques in the current version of Cachet
were to appear in a future Bayesian network engine, which
proved then to be even faster on the benchmarks from this
paper. However, we would also expect satisfiability solvers
and the associated model-counting algorithms to continue to
improve apace, roughly doubling in speed and problem size
every two years. It will be an interesting competition for the
foreseeable future.

References
D. Allen and A. Darwiche. New advances in inference by recur-
sive conditioning. InProceedings of the 19th Conference on Un-
certainty in Artificial Intelligence UAI-2003, pages 2–10, 2003.

F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity
results for #SAT and Bayesian inference. InProceedings 44th
IEEE FOCS 2003, pages 340–351, 2003.

F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination:
Bayesian inference via backtracking search. InUncertainty in
Artificial Intelligence UAI-2003, pages 20–28, 2003.

R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back tech-
niques to solve real-world SAT instances. InProceedings, AAAI-
97: 14th National Conference on Artificial Intelligence, pages
203–208, 1997.

P. Beame, R. Impagliazzo, T. Pitassi, and N. Segerlind. Memo-
ization and DPLL: Formula caching proof systems. InProceed-
ings 18th Annual IEEE Conference on Computational Complex-
ity, pages 225–236, Aarhus, Denmark, July 2003.
M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational
bayesian networks for exact inference. InProceedings of the
Second European Workshop on Probabilistic Graphical Models
(PGM-2004), pages 49–56, 2004.
S. Cook and D. Mitchell. Finding hard instances of the satis-
fiability problem: A survey. InDIMACS Series in Theoretical
Computer Science, 1997.
A. Darwiche. Recursive conditioning.Artificial Intelligence,
125(1-2):5–41, 2001.
A. Darwiche. A logical approach to factoring belief networks.
In Proceedings of International Conference on Knowledge Rep-
resentation and Reasoning, pages 409–420, 2002.
M. Davis, G. Logemann, and D. Loveland. A machine program
for theorem proving.Communications of the ACM, 5:394–397,
1962.
R. Dechter. Enhancement schemes for constraint processing:
Backjumping, learning and cutset decomposition.Artificial In-
telligence, 41:273–312, 1990.
R. Dechter. Bucket elimination: A unifying framework for rea-
soning.Artificial Intelligence, 113:41–85, 1999.
E. Goldberg and Y. Novikov. Berkmin: a fast and robust sat-
solver. InProceedings of the Design and Test in Europe Confer-
ence, pages 142–149, March 2002.
H. Kautz and B. Selman. Unifying sat-based and graph-based
planning. InProceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99), pages 318–325. Mor-
gan Kaufmann, 1999.
H. Kautz and B. Selman. Ten challenges redux: Recent progress
in propositional reasoning and search. InNinth International
Conference on Principles and Practice of Constraint Program-
ming CP 2003, 2003.
M. L. Littman. Initial experiments in stochastic satisfiability. In
Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 667–672, 1999.
S. M. Majercik and M. L. Littman. Using caching to solve larger
probabilistic planning problems. InProceedings of the 15th AAAI,
pages 954–959, 1998.
J. P. Marques-Silva and K. A. Sakallah. GRASP – a new search
algorithm for satisfiability. InProceedings of the International
Conference on Computer Aided Design, pages 220–227, San Jose,
CA, November 1996. ACM/IEEE.
J. Pearl.Probablistic Reasoning in Intelligent Systems. Morgan
Kaufmann, San Mateo, CA, 1988.
D. Roth. On the hardness of approximate reasoning.Artificial
Intelligence, 82(1/2):273–302, 1996.
T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi. Combin-
ing component caching and clause learning for effective model
counting. InSeventh International Conference on Theory and
Applications of Satisfiability Testing, 2004.
T. Sang, P. Beame, and H. Kautz. Heuristics for fast exact model
counting. To appear in SAT05, 2005.
M. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz,
H. Lehmann, and G. Cooper. Probabilistic diagnosis using a re-
formulation of the internist- 1/qmr knowledge base i. the proba-
bilistic model and inference algorithms.Methods of Information
in Medicine, 30:241–255, 1991.
D. J. Spiegelhalter. Probabilistic reasoning in predictive expert
systems. In L. N. Kanal and J. F. Lemmer, editors,Uncertainty in
Artificial Intelligence. Elsevier/North-Holland, 1986.
L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Effi-
cient conflict driven learning in a boolean satisfiability solver. In
Proceedings of the International Conference on Computer Aided
Design, pages 279–285, 2001. ACM/IEEE.


