This paper appears in

Proceedings of AAAI-9/, Seattle, WA, July 1994.

This version includes an additional appendix, with a proof
of the Mapworld Query Completeness theorem.

An Empirical Evaluation of Knowledge Compilation

Henry Kautz and Bart Selman
AT Principles Research Department
AT&T Bell Laboratories
Murray Hill, NJ 07974

{kautz, selman }@research.att.com

Abstract

Computational efficiency is a central concern in the design of knowledge rep-
resentation systems. Compiling a knowledge-base into a more tractable form
has been suggested as a way around the inherent intractability of many repre-
sentation formalisms. Because not all theories can be put into an equivalent
tractable form, Selman and Kautz (1991) have suggested compiling a theory
into upper and lower bounds (one logically weaker, the other logical stronger)
that approximate the original information.

A central question in this approach is how well the bounds capture the orig-
inal knowledge. This question is inherently empirical. We present a detailed
empirical evaluation of the compilation of two kinds of theories: computation-
ally challenging randomly generated theories, and propositional encodings of
planning problems. Our results show that one can answer a very high percent-
age of queries even using unit clause bounds, which are much easier to compute
than more general tractable approximations. Furthermore, we demonstrate
that many of the queries that can be answered by the bounds are expensive to
answer using only the original theory: in other words, knowledge compilation
does not just “skim off” easy queries. In fact, we show substantial total compu-
tational savings in using the bounds together with the original theory to answer
all queries (with no errors) from a large benchmark set, over using the original
theory alone. This study suggests that knowledge compilation may indeed be a
practical approach for dealing with intractability in knowledge representation
systems.

1 Introduction

In the design of knowledge representation systems, the tradeoff between expressive
power and computational tractability has been studied extensively. Unfortunately,



the languages that allow for efficient inference are often considered too restrictive.
One way around this issue is to employ some form of knowledge compilation. The
idea is to let the user enter statements into the knowledge base (KB) in an unrestricted
language, and have the system subsequently translate the information into a tractable
form. Since an exact translation is often not possible, Selman and Kautz (1991)
propose to approximate the original theory by using two bounds, one logically weaker
(the upper bound) and the other logically stronger (the lower bound). As an example,
they consider compiling general propositional theories into two approximating Horn
theories. Certain queries can be answered quickly by using the bounds, as will be
described below.

Though theoretically appealing, the practical value of knowledge compilation will
depend on how well the bounds approximate the original information. In other words,
what fraction of the incoming queries can be answered quickly by using the bounds?
We would also like it to be the case that among those queries that can be answered
with the bounds, there are queries that cannot be answered easily using the original
theory (i.e., the bounds are not just “skimming off” the easy queries).

We will first show, by using a general complexity-theoretic argument, that there
do exist theories for which answering certain queries using the bounds is much easier
than answering the same queries on the original theory. This argument reveals the
existence of such theories and queries, but does not rule out the possibility that one
would rarely encounter them in practice. We therefore also undertook an empirical
evaluation of the knowledge compilation approach. We considered two classes of
theories: hard random theories and propositional encodings of planning problems. We
compile those theories, and give experimental data which shows that the compilation
leads to dramatic computational savings.

In order to conduct our experiments, we needed theories that were sufficiently
challenging, so that answering queries would take a reasonable computational effort;
otherwise there would be no need for compilation in the first place. For the random
theories, we used the hard problem class as identified in Mitchell et al. (1992). For
our planning problems, we constructed a simple autonomous robot domain. To our
surprise, planning problems that would intuitively appear quite hard were often an-
swered almost instantaneously by the standard Davis-Putnam satisfiability procedure
(Davis & Putnam 1960). In fact, we were able to prove that a very general class of
such problems can be solved in linear time by unit propagation (a standard compo-
nent of satisfiable procedures), even though many Al planning systems would find
them very difficult. After identifying this class of “easy” planning problems, we were
able to construct a planning domain that is provably computationally difficult, as was
needed in our evaluation of knowledge compilation.

The form of knowledge compilation examined in this paper is based on approxima-
tions between logical languages that fall into different classes in the hierarchy of com-
putational complexity. The term “knowledge compilation” is used more broadly in
the expert systems community to refer to a wide variety of work that aims to increase



the efficiency of such systems. Much of this work develops techniques for transforming
“deep” functional models of devices to “shallow” diagnostic rules (Chandrasekaran
& Mittal 1983; Keller 1991). The output of such systems does not correspond to
either an upper-bound or a lower-bound in our sense; while some information may be
lost in the compilation process (as with our upper-bounds), the compilers themselves
introduce domain-specific information about diagnosis. Others view knowledge com-
pilation as a kind of automatic programming, with the goal of converting a system
specification to an implementation that exactly satifies it (Dietterich 1991). Bylander
(1991) provides a high-level logical characterization of some different kinds of knowl-
edge compilation; interestingly, he argues that forms of knowledge compilation based
on approximations (as is ours) are unlikely to provide significant computational im-
provement. However, his argument is based on the assumption that the compilation
process itself must be tractable, which we explicitly reject.

2 Knowledge Compilation by Theory Approxima-
tion

Selman and Kautz (1991) define knowledge compilation by theory approximation as
follows. Assume that we have a logical theory ¥. One can approximate ¥ by two
theories Yy, and g, that are in a given tractable logical language. The approxi-
mation is such that Y, = X = Y. So, g is logically stronger than the original
theory, and is called a greatest lower bound (GLB); and Yy, is logically weaker than
the original theory, and is called a least upper bound (LUB).! The bounds are the
best ones possible, given the particular tractable language. This means, for example,
that there does not exist a tractable theory ¥’ that is not logically equivalent to the
Y and is such that Y, = ¥ = X. The LUB of a theory is unique, but there can
be several distinct GLBs.

Let us consider an example of approximating a general propositional theory by
two bounding Horn theories. We take ¥ = (ma V) A (=bVe)A(aVb). (a,b, and ¢ are
propositional letters.) The Horn theory a AbAc is an example of a Horn lower-bound;
both a Acand bA e are GLBs; (—maVe)A(=bVe) is an example of a Horn upper-bound;
and ¢ is the LUB. These bounds can be verified by noting that

(aNbAe)E(aNe)EXEcE((maVe)A(=bVc)).

Moreover, there is no Horn theory ¥/ logically distinct from a A ¢ such that (a Ac) =
Y = X, Similar properties hold of the other GLB and of the LUB.

Instead of compiling into Horn theories, one can choose to compile into other
tractable propositional theories, such as a set of unit clauses (i.e., a conjunction of

!The terminology is based on a model-theoretic view of the approximations. Note that the models
of, for example, the X, form a subset of the models of X. We are interested in a largest possible
subset. For another approach to approximating logical theories, see Dalal and Etherington (1992).



KC_Query(«a)
if Y | o then return “yes”
else if Y1, [~ o then return “no”
else determine whether ¥ = o using
a general theorem prover and the original theory.

Figure 1: Fast querying using theory approximation. The original theory is ¥; ¥,
and Y, are its approximations; and « is the query.

literals) or a set of binary clauses. Our experiments below show that even unit bounds
lead to substantial computational savings.

Fig. 1 shows how the bounds can be used to improve the efficiency of a knowledge
representation system. The system first tries to obtain an answer quickly by using
the bounds, which can be done in linear time for Horn (Dowling & Gallier 1984)
or unit bounds. In case no answer is obtained, the query is tested directly against
the original theory. Note that KC_Query thus remains a complete procedure. A
time-saving alternative would be for the system to simply return “don’t know” if the
bounds do not answer it.

The system can thus answer certain queries in linear time, resulting in a improve-
ment in its overall response time. Exactly how many queries can be handled directly
by the approximations depends on how well the bounds characterize the original
theory.

3 Computational Savings

The key question concerning knowledge compilation is whether it will lead to an
actual savings in computational effort. For example, it could be the case that queries
answered by the approximating bounds can also be answered quickly using the original
theory. An obvious counterexample is any inconsistent theory. Compilation yields an
inconsistent upper bound. Any query against this bound would quickly return “yes”
(see Fig. 1). However, evaluating a query against the original theory would in general
involve proving that the theory was inconsistent, which is NP-complete.

Of course, most interesting knowledge bases will be consistent. Let us therefore
consider a consistent theory that is equivalent to a Horn theory, but is not in Horn
form. Clearly, all queries can be answered efficiently against the bounds. However,
it is not the case that a theorem prover could also answer queries efficiently against
the original theory. This can be shown using a result by Valiant and Vazirani (1986).
They show that even if a propositional theory has a single model (and is thus trivially
equivalent to a Horn theory), finding the model is still intractable (unless NP # RP,
which is unlikely). Therefore, there cannot exist a theorem prover that efficiently



handles this special case, because such a prover could be used to find the unique
model of the non-Horn theory (by repeatedly testing whether each literal followed
from the theory).

This complexity theoretic argument shows that there exist theories where compi-
lation gives a provable computational savings. Of course, this still leaves open the
question whether one would encounter such theories in practice. In the next two
sections, we therefore present an empirical evaluation of knowledge compilation of
two classes of theories. In both cases, we will demonstrate substantial computational
savings.

4 Empirical Evaluation I: Hard Random Theories

In this section, we consider the compilation of hard, randomly-generated propositional
theories. Mitchell et al. (1992) show that most randomly-generated theories are easy
to reason with. Such theories tend to be either very over-constrained or very under-
constrained; in either case, experiments show that answering queries is easy using
the standard Davis-Putnam procedure (Davis & Putnam 1960).> However, Mitchell
et al. also described how to generate computationally challenging theories. The key
is to generate formulas with a particular ratio of clauses to variables. For random
3CNF formulas, the ratio is about 4.3. We consider hard random 3CNF theories
containing between 75 and 200 variables. In order to simplify the following analysis,
we computed bounds that consisted of conjunctions of unit clauses. Note that unit
clauses are a restricted case of Horn clauses. Therefore, these bounds are not as tight
as the full Horn bounds. We will show that even these bounds are useful for answering
a high percentage of queries. Because the full Horn bounds are tighter, they would
answer an even higher percentage of queries. However, by considering the unit clause
bounds we are able to provide a simple exact analysis.

We began by generating a set of 40 random 3CNF theories, with 10 each based
on 75, 100, 150, and 200 variables. Then we computed the unit LUB and a unit
GLB of each. Table 1 gives the median size, in literals, of the LUB and GLB for
each size theory. The bounds were computed using the algorithms as given in Selman
and Kautz (1991), adapted for generating unit bounds. We generated the optimal
bounds. Computation time for the unit LUBs ranged from 5 minutes for the 75
variable theories, to one hour for the 200 variable theories. (All experiments were run
on a 100Mhz SGI Challenge.) Computation of the unit GLBs ranged from 1 minute
to 5 minutes each.

2If the theory is over-constrained, it is generally unsatisfiable, so that all queries trivially follow.
If it is under-constrained and the CNF query contains short disjunctions, then the query almost
certainly does not follow. Finally, if the theory is under-constrained and the CNF query contains
only long disjunctions, then the query almost certainly does follow, which can be easily shown by
adding the negation of the query to the theory and using the Davis-Putnam procedure with unit
propagation to show inconsistency.



vars | clauses || size unit | size unit || percent queries answered
LUB GLB unit | binary | ternary

75 322 53 71 || 100% 85% 88%
100 430 57 93 || 100% 76% 79%
150 645 62 139 || 100% 66% 66%
200 860 132 188 || 100% 83% 85%

Table 1: Statistics for compiling and querying hard random 3CNF theories.

The percentage of queries that could be answered by these bounds, as given in
Table 1, is computed using some basic probability theory. We assume that we are
dealing with single-clause queries drawn from a uniform fixed-clause length distribu-
tion. The simplest case is the unit clause queries. All unit clause queries can be
answered using only the unit LUB, because this bound is complete for such queries.
Thus this column is 100% for every size theory.

Next, let us consider the more interesting case of binary queries. Let z V y be a
random binary clause, where x and y are distinct and not complements. We wish to
compute the probability that the bounds answer the query, given that the unit LUB
is of size [ and the unit GLB is of size m, and there are N variables in the theory.
That is, we wish to compute

Pr((Zw F 2 Vy)or (Zan /2 Vy))

which equals
Pr(mu FaVy)+ Pr(Ean /2 Vy)

because the two possibilities are disjoint. A disjunction is entailed by a set of literals
if and only if one of the disjuncts is so entailed. Thus,

Pr(Xw FaVy)=Pr((Zw ) or (S Fy))
This quantity is equal to
PrZmm b a)+ (St y) — (S F 2 Ay)

The first and second terms are equal to the odds of picking a random literal that is in
the LUB, namely {/(2N). The third term is equal to the number of ways of choosing
two distinct literals from the LUB, divided by the number of ways of choosing two
distinct, non-complementary literals, namely {(l — 1)/((2N)2(N —1)). Thus,

I I(l—1)
PriSuw b aVy) =5+ o8 “Inv = D)



vars | clauses || bounds and tableau tableau only
binary ternary || binary | ternary
75 322 51 48 258 248
100 430 54 45 368 341
150 645 61 59 1286 1084
200 860 55 51| 12962 8632

Table 2: Time in seconds to answer 1000 random queries.

Using a similar calculation, we can calculate Pr(X,, F 2 V y). Combining the prob-
ability that the LUB answers the query with the probability that the GLB answers
the query results in the expression

AN(m —1) = 3(m —1)+ 1> —m?

b AN(N —1)

The value of this expression was used to complete the “binary” column of Table 1.

The probability that the bounds answer a random ternary query can be similarly
derived, and was used to complete the final column of the table.

As we can see from Table 1, the percentage of queries that can be handled by the
unit clause bounds is quite high. Note that the queries handled by the bounds can be
answered in linear time. The Davis-Putnam procedure, however, scales exponentially
on the queries considered in the table (this follows from the experiments in Mitchell et
al. (1992)). Thus, this suggests that knowledge compilation on such hard randomly-
generated theories should have a clear payoff.

We verified the computational savings suggested by the preceding analysis by
implementing the fast querying algorithm shown in Fig. 1, and testing 1000 random
binary and 1000 random ternary queries against each of the 40 test theories.

In case both bounds failed to answer a query, it was tested against the origi-
nal theory using an efficient implementation of the Davis-Putnam procedure called
“tableau”.? Table 2 lists the average time to run each batch of a 1000 queries, using
the bounds together with tableau versus using tableau alone. Thus, in both cases
all queries were answered. We see that knowledge compilation reduced the overall
time by over two orders of magnitude on the largest theories. This eliminates the
remote possibility that the bounds are only answering the “easy” queries. Earlier
we invoked complexity theory to argue that in general the bounds are not limited to
easy queries; these experiments verify that the bounds answer hard queries against a
computationally interesting distribution of random theories.

3The Davis-Putnam procedure is currently the fastest known complete procedure for propositional
satisfiability testing and theorem-proving on the class of formulas considered here (Buro & Biining
1992; Dubois et al. 1993). Tableau (Crawford & Auton 1993) is one of the fastest implementations
of the algorithm.



As an aside, we observe that even when we take into account the time required
to compile the theories, we obtain an overall time savings. For example, on the
200 variable theories, computing the bounds takes about an hour and five minutes;
thus, the total time to compute the bounds and answer 1000 binary queries is 3,955
seconds, versus 12,962 seconds not using the bounds. (Note that difference in overall
time would increase even further when we would consider, for example, 10000 queries.)
Thus in this case we have gone beyond the main objective of knowledge compilation,
namely to speed query answering by shifting computational effort from on-line to
off-line (compilation), and have actually reduced the total amount of work required.

Finally, we observe that these positive results for random theories are quite sur-
prising, since one would expect that their apparent lack of structure would make them
hard to approximate by simpler theories.

5 Empirical Evaluation II: Planning Formulas

Planning has traditionally been formalized as first-order deduction (Green 1969;
McCarthy & Hayes 1969). In this approach, a plan is basically a proof that a state-
ment asserting the existence of a goal state is valid. Kautz and Selman (1992) develop
an alternative formalization of planning as propositional satisfiability. They show how
planning problems in typical domains, such as the blocks world, can be axiomatized
so that every model of the axioms corresponds to a plan. The satisfiability formaliza-
tion makes it easy to state facts about any state of the world (not just the initial and
goal states) and is closer in spirit to modern constraint-based planners (Stefik 1981;
Chapman 1987) than is the deductive approach.

We decided to evaluate knowledge compilation within the planning as satisfiabil-
ity framework. The particular problems described in the Kautz and Selman paper
all have unique models, corresponding to a single solution. Compiling such formulas
provides no benefit beyond finding the single satisfying model. Therefore we devel-
oped a class of planning problems that each have many different solutions. Compiling
these problems allows one to evaluate quickly various queries about what must hold
in all solutions, as well as to pose queries that impose additional constraints on the
possible solutions.

We call this domain the “mapworld”. In the basic version of the mapworld, we
imagine that a robot is moving between nodes of a graph, such as the one shown
in Fig. 2. (Ignore for now the section of the figure labeled “MAZE”, which will be
explained later.) At each time step the robot can either stay in place or move to
an adjacent node. An instance of the mapworld consists of axioms that describe a
particular such graph, as well as constraints on the location of the robot at various
times, up to some final instance; for example, that the robot be at node a at time 0
and at node ¢ at final time 10. One can then pose queries to answer against these
axioms, such as “Can the robot be at node f at time 27”7 (obviously, no), or “Does
the fact that the robot goes through node ¢ imply that it does not go through node



Figure 2: The mapworld domain.

kE?” (less obviously, this implication does indeed hold, because it takes at least 11
steps to reach ¢ when going through both ¢ and k).

One application in which the ability to answer queries of this sort is useful is plan
recognition (Schmidt, Sridharan, & Goodson 1978; Allen & Perrault 1980; Kautz
1986). For example, one may have partial knowledge about the goals and actions of
another agent, and want to be able to infer the possible states the agent could be in at
various times. Another interesting application is in reactive planning systems (Agre
& Chapman 1987; Schoppers 1987; Kaelbling 1988; Kabanza 1990). An important
issue in such systems is how to combine reactive behaviors (e.g. move to a node if
it contains food) with more global plans (e.g. visit nodes x and y before the end
of the day). A possible architecture for a combined system would have a reactive
module that proposed actions (e.g. move to node ¢), which are however rejected if the
axiomatization of the global planning problem entails the negation of the action (i.e.,
the action would be incompatible with the global goals). This proposal is similar to
Bratman, Israel, and Pollack’s (1988) view of plans as filters, but note that we suggest
filtering against the whole set of possible solutions (models) of the planning problem,
rather than against a single one. Clearly it requires the ability to check rapidly if the
proposed action is consistent with at least one solution to the global problem.

The basic mapworld can be captured by the following kinds of axioms. The
proposition that the robot is a node x at time 7 is written x;. First, there are
movement axioms M, that state that the robot always stays put or moves to an
adjacent node; for our example, these would include

a; O (aip1 Vbipr Vdigr)

for 0 <1 < 10. Second, there are disjointedness axioms D, that state that the robot
is only at one node at a time; for example,

a; O (_'bi/\---/\—'ki).
Finally, there are assertions that constrain the robot to be at certain locations at

certain times; such positive assertions (such as {ao, g10}) are designated P, while

9



negative assertions (such as {—fs5}) are designated A. Finally, we define propositions
of the form xever by
Tever = (l’o V T VeV 1’10).

Given these axioms, the first query above becomes “Does MUDUN UP | = f,77,
and the second becomes “Does M UDUN UP | cever D —kever?” Surprisingly,
it turns out that all CNF queries against a basic mapworld problem can be answered

quickly, using a standard theorem-prover.?*

One can prove that a simple rule of
inference called “unit propagation” is complete for such theories. Unit propagation is
takes only linear time, and is part of all resolution-style theorem proving procedures,
such as the Davis-Putnam procedure. In general unit propagation by itself is not

a complete decision procedure. However, in the appendix we prove the following
theorem (Kautz & Selman 1994):

Theorem: Mapworld Query Completeness: For any basic mapworld problem
and clausal query o, we have

MUDUNUP E
iff unit propagation proves that MU DUN UP U {—~a} is inconsistent.

Thus, knowledge compilation is not needed in this case: unit propagation yields a
linear-time decision procedure. This indicates that there are interesting computa-
tional advantages to using a satisfiability encoding for planning. For example, a
standard STRIPS-style planner (Fikes & Nilsson 1971) would end up exploring (in
general) an exponential number of paths before realizing that certain sets of nodes
cannot be reached within a fixed time-bound.

To make our mapworld more computationally challenging, we generalize it by
adding constraints that say that certain pairs of nodes are forbidden to appear on
the same path. Such constraints often occur in real-life planning problems, where
for example going through a node represents consuming some limited resource. An
example of such a constraint is = fever V —Jever, which states that the robot cannot
pass through both nodes f and j on its way to g. This change makes planning much
harder — in fact, answering CNF-queries becomes NP-complete, as can be shown
by a reduction from path with forbidden pairs (Garey & Johnson 1979, page 203).
This also greatly increases the applicability of our results, because most interesting
planning problems are NP-complete (Gupta & Nau 1991; Erol, Nau, & Subrahmanian
1992) and thus can be efficiently encoded as mapworld problems.

41t is not surprising, of course, that an efficient algorithm exists for these queries, because the
lengths of the shortest paths between all points in a graph can be determined in polynomial time
(Aho, Hopcroft, & Ullman 1974). What is unexpected is that the SAT encoding of the problem
allows an efficient solution by a completely general theorem-prover, that does not employ a special
shortest-path algorithm.

10



RandBin | RandEver | Hand

number queries 500 400 5

theory only time 2013 8953 | 1071
KC_Query time 464 3748 439

>+LUB time 580 840 6.9

KC using ¥+LUB time 283 617 6.8
bounds only time 5 6 1

num. answered by bounds 376 144 2

Table 3: Statistics on querying mapworld with and without knowledge compilation.
Time in seconds.

In Fig. 2, the area labeled “MAZE” is a 30-node subgraph constructed so that
all paths through it are blocked by various forbidden pairs of nodes. Disregarding
these pairs, the shortest path through the maze is 5 steps long. By counting alone,
then, one would think that was possible to go from @ to g by traversing the maze
in no more than 10 steps (the time limit on the problem). It is computationally
hard, however, to determine that these paths are blocked, and that in fact the robot
must traverse the edge from d to e. Any query that depends on realizing this fact
is also quite hard to answer. We therefore compiled the problem instance, effectively
moving the most computationally difficult part of the reasoning off-line. (As we will
see, the bounds also contain a great many other non-trivial conclusions concerning
the mapworld example.)

The SAT encoding of the mapworld in Fig. 2 contains 576 variables and 29,576
clauses. It takes about 4400 seconds to compute both the unit LUB and a unit GLB.
The unit LUB determines the values of 341 of the variables. The GLB we found was
a single model, which nonetheless was useful in query-answering.

We then created three different test sets of queries: RandBin is a set of 500 random
binary queries; RandEver is set of 400 random binary queries, where the propositions
are taken just from the “ever” predicates; and Hand is a small set of hand-constructed
queries that are intuitively interesting and non-obvious, such as fever V tever-

Table 3 compares the results of various ways of running the queries. For “theory
only” the queries were simply tested against the uncompiled problem using tableau.
The “KC_Query” row is the time required to answer all queries using the query
algorithm presented in Fig. 1 that uses both the bounds and the original theory. In
all cases we see a significant speed-up. In fact, the savings for the RandEver test set
more than pays off the entire cost of computing the bounds.

We then experimented with several variations on the basic knowledge-compilation
querying algorithm. For the “¥+LUB” row we conjoined the original theory with its
unit LUB, and then ran all queries using tableau. Note that the conjoined theory
is logically unchanged (since the original theory entails its LUB), but is easier to

11



reason with. For the RandBin test set, this approach is not as good as the plain
“KC_Query” algorithm; however, for RandEver and Hand it is considerably faster.
Next, in the “KC using X4LUB” experiments we first tested each query directly
against the bounds, but if they did not answer it, we then answered it using tableau
with the conjoined theory. In every case this was the fastest complete method.

Finally, we ran the queries against the bounds only, leaving some of them unan-
swered. In all cases this took only a few seconds for hundreds of queries. About 75%
of the RandBin queries, 36% of the RandEver queries, and 2 out 5 of the Hand queries
can be answered in this way. However, the great difference in speed (e.g., 5 seconds
on the RandBin queries, versus 283 seconds for the fastest complete method) suggests
that using the bounds alone may be most practical for many real-time applications.
For example, in many domains instead of relying on expensive theorem proving a
system may try to obtain information by direct sensing of its environment.

6 Conclusion

We have evaluated the computational savings that can be gained by compiling gen-
eral logical theories into a pair of tractable approximations. We first argued on
complexity-theoretic grounds that on certain theories knowledge compilation must
result in computational savings. We then considered the compilation of two kinds of
theories: hard random CNF theories, and propositional encodings of planning prob-
lems. In both cases our experiments showed that a high percentage of queries can
be answered using the tractable bounds, and that the approach leads to a dramatic
decrease in the time required to answer a large series of queries. This indicates that
the knowledge compilation approach is useful for both unstructured, randomly gener-
ated theories, and highly structured theories such as encodings of planning domains.
In this paper, we obtained good performance with unit clausal approximations. An
open question that we will address in future work is whether it is worthwhile to com-
pute the more accurate, but more expensive to obtain, Horn approximations. In any
case, this study has shown that knowledge compilation by theory approximation is in-
deed a promising approach for dealing with intractability in knowledge representation
systems.

References

Agre, P. E., and Chapman, D. 1987. Pengi: an implementation of a theory of
activity. In Proceedings of AAAI-87, 268.

Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1974. The Design and Analysis of
Computer Algorithms. Reading, MA: Addison-Wesley.

12



Allen, J. F., and Perrault, C. R. 1980. Analyzing intention in utterances. Artificial
Intelligence 143-177.

Bratman, M. E.; Israel, D. J.; and Pollack, M. E. 1988. Plans and resource-bounded
practical reasoning. Computational Intelligence 4(4). also SRI TR 425R.

Buro, M., and Bining, H. K. 1992. Report on a SAT competition. Technical
Memorandum 110, Mathematik/Informatik Universitat Paderborn.

Bylander, T. 1991. A simple model of knowledge compilation. IEEFE Expert 6(2):73—
74.

Chandrasekaran, B., and Mittal, S. 1983. Deep versus compiled knowledge ap-
proaches to diagnostic problem solving. International Journal of Man-Machine

Studies 19(5):425-436.

Chapman, D. 1987. Planning for conjunctive goals. Artificial Intelligence 32:333—
378.

Crawford, J., and Auton, L. 1993. Experimental results on the crossover point in

satisfiability problems. In Proceedings of AAAI-93, 21-27.

Dalal, M., and Etherington, D. W. 1992. Tractable approximate deduction using
limited vocabularies. In Proceedings of CSCSI-92, 206-212.

Davis, M., and Putnam, H. 1960. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery 7:201-215.

Dietterich, T. G. 1991. Bridging the gap between specification and implementation.
IEEE FExpert 6(2):30-82.

Dowling, W. F., and Gallier, J. H. 1984. Linear time algorithms for testing the
satisfiability of propositional Horn formula. Journal of Logic Programming 3:267—
284.

Dubois, O.; Andre, P.; Boufkhad, Y.; and Carlier, J. 1993. SAT versus UNSAT. In
Preprints, Second DIMACS Algorithm Implementation Challenge. Piscataway, NJ:
Rutgers University.

Erol, K.; Nau, D.; and Subrahmanian, V. 1992. On the complexity of domain-
independent planning. In Proceedings of AAAI-92, 381-386.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: a new approach to the application

of theorem proving to problem solving. Artificial Intelligence 2.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability: a Guide to
the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company.

Green, C. 1969. Application of theorem proving to problem solving. In Proceedings
of IJCAI-69, 219-239.

13



Gupta, N., and Nau, D. S. 1991. Complexity results for blocks-world planning. In
Proceedings of AAAI-91, 629.

Kabanza, F. 1990. Synthesis of reactive plans for multi-path environments. In

Proceedings of AAAI-90.

Kaelbling, .. 1988. Goals as parallel program specifications. In Proceedings of
AAAI-8S, 60-65.

Kautz, H., and Selman, B. 1992. Planning as satisfiability. In Proceedings of FCAI-
92, 359.

Kautz, H., and Selman, B. 1994. An empirical evaluation of knowledge compi-
lation by theory approximation (extended version). Technical report, AT&T Bell
Laboratories, Murray Hill, NJ.

Kautz, H. 1986. Generalized plan recognition. In Proceedings of AAAI-86.

Keller, R. M. 1991. Applying knowledge compilation techniques to model-based
reasoning. [EEE FErpert 6(2):82-87.

McCarthy, J., and Hayes, P. J. 1969. Some philosophical problems from the stand-
point of artificial intelligence. In MICHIE, D., ed., Machine Intelligence 4. Chich-
ester, England: Ellis Horwood. 463ff.

Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard and easy distribution of SAT
problems. In Proceedings of AAAI-92.

Schmidt, C.; Sridharan, N.; and Goodson, J. 1978. The plan recognition problem:
an intersectiuon of psychology and artificial intelligence. Artificial Intelligence 11.

Schoppers, M. J. 1987. Universal plans for reactive robots in unpredictable environ-

ments. In Proceedings of AAAI-87, volume 2, 1023.

Selman, B., and Kautz, H. 1991. Knowledge compilation using Horn approximations.

In Proceedings of AAAI-91, 904-909.

Stefik, M. 1981. Planning with constraints (molgen: Part 1 and 2). Artificial
Intelligence 16:111-170.

Valiant, R., and V.V.; V. 1986. NP is as easy as detecting unique solutions. Theo-
retical Computer Science 47:85-93.

14



Appendix

Theorem: Mapworld Query Completeness: For any basic mapworld problem
and a clausal query o, we have

MUDUNUP E
iff unit propagation proves that M UDUN UP U —a is inconsistent.

Proof: The “if” follows from soundness of unit propagation. To prove “only if”, we
first note that the negation of a clausal query is a set of unit clauses. Thus without
loss of generality we can assume that these unit clauses have been added to N and
P, and that the query is simply the false clause, (). In other words, where Fpyp s
the unit propagation relation, we will show that M UDUN UP is unsatisfiable only
it MUDUNUP Fyp (0. We begin with the following lemma.

Lemma 1 For any h;, MUDUN |= =h; only if MUDUN Fpp —h;

Proof by induction, where n is the highest time index.

Base case: j = n. Observe that MUDUN | —h, iff =h, € N, because otherwise
the axioms are satisfied by the model that makes every variable false except for h,,.
Inductive case: assume the lemma is true j such that 1 + 1 < 5 < n. We will prove
that it is true for j = 4. So suppose M UDUN | —h;. Consider the following two
cases:

(i) =h; € N. Then plainly MUDUN Fpp —h;.

(i1) =h; € N. Let the move axiom for h; be =h; V a;41 V -+ V z;41. We claim that it
must be the case that

MUDUN E —a;q

MUDUN E =z,

This is so because we could otherwise construct a model of the axioms that satisfies
h;. For example, suppose there were a model M of the axioms that satisfied a;y;.
Then we can construct a model M’ of the axioms satisfying h; that corresponds to a
path that starts at h; and then goes through a;;; and continues on as it does in M;
that is, where we identify a model by the set of positive literals it satisfies,

M' ={h}U{xrlk > i+ 1 and 2, € M}

By the induction hypothesis, all of a;i1,...,z;1; follow from M UDUN by unit
propagation. Then unit propagation on these literals and the move axiom for h;
yields =h;. This proves the lemma. =

To prove the theorem we need only to generalize the lemma to allow the inclusion
of a set of positive literals P among the axioms. Let us assume that MUDUN UP
is unsatisfiable.

15



First, suppose that there are a pair of literals {a;, b;} € P that have the same index.
Then () easily follows by unit propagation from this pair and the disjointedness axioms
D. Therefore without loss of generality we can assume that there is no such pair.
Furthermore, also without loss of generality we can assume that P is of of minimal
size in order to make the axioms unsatisfiable. We will now show that this means
that either |[P| =1 or |P| = 2.

Suppose (counter to fact) that |P| > 3 and that for every subset P’ of P, that
MUDUN UP is consistent. Let a; be the second-highest indexed member of P,
and let

731 = {$z|$z - P,Z S ]}
7)2 = {$z|$z - P,Z Z ]}

Then there must be a model My of M U DU NUP;, and a model My of MUD U NU
P,. Then we can create a model M of M U D UN UP by simply concatenating the
path described by M; up to a; with the path described by M; starting from a;:

M = {zp|x; € My,i < 3} U {ag|e; € My, 0 > 5}

Because this contradicts the assumption that the axioms are inconsistent, we can
assume that there is no such P of minimal size larger than 2. We consider the two
cases in turn:

(i) [P] = 1. Let P = {a;}. Tt must be the case that M UDUN |= —a;. Then, by
the lemma, —a; follows from M U D U N by unit propagation. So by one additional
unit step of unit propagation, M UDUN UP typ 0.

(ii) |P| = 2. Let P = {a;,b;} where j < k, where both MUDUN U {a;} and
MUDUN U{b} are satisfiable. Let R be the set of literals indexed by k that are
“ruled out” by by and the disjointedness axioms D: R = {—xy|z # b} Note that R
follows from DU{b..} by unit propagation. Now, we claim that if M U D U N U{a;, by}
is unsatisfiable, then M U DU (N UR)U {a;} is also unsatisfiable. To show this, we
will prove the contrapositive of the claim.

So suppose M U DU (N UR)U{a;} is satisfiable. Then there is a model M of
this formula, describing a path that starts at a;, and continues on through adjacent
nodes all the way to time n. In particular, the path must go through some node at
time k. Now, because this model satisfies R, the only node this can be possibly be
is b, so M satisfies by. Therefore M satisfies M UD UN U {a;,bx}. This proves the
claim.

Thus the claim lets us conclude that M U D U (N UR)U {a,} is unsatisfiable.
But this formula fits the previous case (i), where the negative literals in R are simply
added to A'. Therefore we know that MUDU (N UR)U{a;} Fyp @ which implies
(since R follows by unit propagation from the original axioms) that M UD U N U
{aj,br} Fup 0. This completes the proof of the theorem. m

16



