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Abstract
Monitoring and forecast of global spread of infec-
tious diseases is difficult, mainly due to lack of fine-
grained and timely data. Previous work in compu-
tational epidemiology has shown that mining data
from the web can improve the predictability of
high-level aggregate patterns of epidemics. By con-
trast, this paper explores how individuals contribute
to the global spread of disease. We consider the
important task of predicting the prevalence of flu-
like illness in a given city based on interpersonal
interactions of the city’s residents with the out-
side world. We use the geo-tagged status updates
of traveling Twitter users to infer properties of the
flow of individuals between cities. While previous
research considered only the raw volume of pas-
sengers, we estimate a number of latent variables,
including the number of sick (symptomatic) trav-
elers and the number of sick individuals to whom
each traveler was exposed. We show that AI tech-
niques provide insights into the mechanisms of dis-
ease spread and significantly improve predictabil-
ity of future flu outbreaks. Our experiments involve
over 51,000 individuals traveling between 75 cities
prior and during a severe ongoing flu epidemic (Oc-
tober 2012 - January 2013). Our model leverages
the text and interpersonal interactions recorded in
over 6.5 million online status updates without any
active user participation, enabling scalable public
health applications.

Introduction
Recent research in computer science and computational epi-
demiology has demonstrated that analysis of social media
can reveal important public health information [Lampos et
al., 2010; Paul and Dredze, 2011; Chunara et al., 2012;
Sadilek et al., 2012b]. Prior work concentrated on two broad
areas: (1) capturing aggregate health trends, and (2) modeling
the health of particular individuals. The primary goal of the
first line of work is to estimate the current rate of influenza
in a given country. The second area—enabled by the recent
surge in pervasiveness of online social media—places em-
phasis on predicting which specific individuals will become

afflicted with flu tomorrow. Both areas have made significant
progress in recent years. However, our understanding of the
emergence of global epidemic patterns from everyday inter-
actions between people is limited.

This paper makes the first steps towards revealing the un-
derlying mechanisms of disease transfer that ultimately pro-
duce the epidemics we observe. We develop computational
techniques that combine data mining of online microblogs,
machine learning that extracts latent information from the
data, and statistical analysis that reveals associations between
fine-grained behavior of concrete individuals and population-
level flu prevalence. Our methods enable us to shed additional
light on important questions in public health that have been
either too expensive or outright impossible to answer. In the
process, we draw parallels to work done in other scientific
fields, including epidemiology and immunology, and show
how our methods complement previous results and bring new
insights.

It has been shown that the overall intensity of airplane
travel is associated with the speed and severity of the spread
of influenza [Grais et al., 2003; Colizza et al., 2006; Brown-
stein et al., 2006; Ruan et al., 2006; Hollingsworth et al.,
2007; Nicolaides et al., 2012]. However, all work to date used
only coarse-grained aggregate statistics to guide the simula-
tions or to estimate the magnitude of these effects. By con-
trast, we can now begin to model the actual number of suscep-
tible, infectious, and infected individuals traveling between
specific airports by leveraging online social media.

Going beyond data mining, we infer latent features that
provide better predictions than alternative models. Specifi-
cally, we learn a language model that classifies individuals as
either “healthy” or “sick” (symptomatic) based on the text of
their online messages. Since we face a steep class imbalance
problem, where the number of healthy people overwhelms
the number of infected, we formulate the classification prob-
lem as a specific instance of support vector machine (SVM)
learning. We directly optimize the area under the ROC curve
to achieve high precision and high recall [Joachims, 2005].

Another latent feature captures meetings between people.
We leverage the GPS tags associated with the messages to es-
timate who met who, while tracking the health state of every-
one involved. As we will see, modeling the health state sig-
nificantly improves prediction accuracy, making our forecasts
more actionable in real-world settings. This demonstrates that



Figure 1: Snapshot of Twitter activity at the JFK airport in New York City. Individuals who indicate sickness are highlighted in
red. From the GPS-tagged data, we see who likely came into contact with the infected people. This paper shows that we can
accurately predict the prevalence of flu in a city by modeling the flux of healthy and sick travelers while modeling their physical
interactions.

AI techniques are essential for solving important sustainabil-
ity challenges that humanity faces today.

Given that we detect a 20% increase in the influx of sick
passengers flying into Boston on a given day, how does the
prevalence of influenza-like disease in Boston change in the
near future? What role does the intensity of physical con-
tact between the passengers and city residents play in the
outbreak? Can these patterns be leveraged to predict future
outbreaks? In the remainder of this paper, we propose and
evaluate a model that provides quantitative answers to such
questions on the basis of online social network data (see Fig-
ure 1).

The real-time aspect of online social media encompass-
ing a large fraction of the population enables pervasive data
collection and analysis at scale. However, the data is noisy
and often incomplete. The low signal-to-noise ratio makes
detailed modeling challenging. We accept the inherent un-
certainty in the data and begin to answer the challenges in-
volved. While traditional survey data is more clear-cut than
online logs, it is too affected by biasing factors. For example,
infected people who do not visit a doctor participating in a
surveillance program, or who provide misleading answers re-
sult in unreliable data. We argue in the paper that a unification
of traditional techniques and scalable data-mining approaches
will lead to better models and tools by canceling each others’
weaknesses.

As we will see, signals that can be extracted from geo-
tagged online data with relative ease—such as the total num-
ber of Twitter users flying from New York City to Boston
on a given day—do explain a portion of the aggregate pat-
terns we see. However, we show that by including inferred
attributes—such as the most likely health state of each pas-
senger on each day—a significantly more accurate model is
obtained. By viewing Twitter users as noisy proxies for mo-
bility and health of the general population, we are able to
model key statistics in real time, including the expected num-
ber of sick passengers flying from city A to city B.

As a result, we show it is possible to decompose the flu
index in a given city into a weighted contribution of a large

collection of factors. Some factors capture local interactions
of individuals within a city, while others model the dynamics
of human travel across cities. The learned features are subse-
quently leveraged for accurate predictions of future progress
of flu outbreaks. Our model provides insights that could help
guide individual as well as public health management deci-
sions. Important questions such as “Should I fly tomorrow or
next week?” and “Which transit hubs or specific connections
should we close to curtail a flu pandemic?” can now be an-
swered in a more data-driven fashion. Specifically, we show
the following:
• Raw airline traffic volume between cities estimated from

Twitter data explains 56% of the variance in flu preva-
lence across 75 major US metropolitan areas.
• Accounting for the health of individual passengers ex-

plains additional 17% of the variance (a total of 73%).
• Modeling physical encounters between sick and healthy

individuals explains additional 5% (a total of 78%).
• Our prediction of a city’s flu index next week is within

7% of the true value 95% of the time.
• The single most important factor of the prevalence of flu

in a given city is the number of sick passengers that have
flown into the city over the past 7 days.
• Our results hold in validation on two independent re-

spected flu metrics (CDC and Google Flu Trends).

The Data
Our experiments are based on data obtained from Twitter, a
popular micro-blogging service where people post message
updates at most 140 characters long. The forced brevity en-
courages frequent mobile updates. Tweets sent from mobile
devices are usually GPS-tagged with accurate location. We
leverage these to model meetings among users in the physical
world.

Using the Twitter Search API1, we collected a corpus of
1http://search.twitter.com/api/



Dataset Statistics
Number of days 95
Number of airports tracked 100
Number of metropolitan areas 75
Users total 632,611
Target users 51,137
Tweets by target users 6,287,446
User flights inferred through tweets 73,460
Number of meetings (target users only) 445,812

Table 1: Summary of statistics of Twitter data relevant to air-
plane travel collected by our backtracking technique. Target
users are ones who have tweeted from more than one airport.

public geo-tagged tweets that originated from the 100 busi-
est commercial airports in the United States. We periodically
queried Twitter for all recent tweets within three kilometers
of each airport. The collection period was 95 days long and
started on October 12, 2012. Altogether, we have logged over
6.5 million tweets authored by more than 630,000 unique
users (see Table 1).

Since this work focuses on the effects of fast long-distance
travel on global disease transmission, we concentrate on users
who had tweeted from two or more airports. We refer to them
as target users, and our dataset contains 51,137 such indi-
viduals. We used the Twitter REST API2 to collect detailed
timelines of target users to obtain a broader context of their
health and interactions with others. This enables us to account
for users who may indicate sickness before or after tweeting
from an airport. We refer to mining this context informally as
backtracking user timelines.

We evaluate our models against two well-established flu
surveillance methods: the official U.S. Center for Disease
Control (CDC) statistics3 (Cf ), and Google Flu Trends4 (Gf ).
Each index estimates the prevalence of flu across various re-
gions based on hospital records and web search query anal-
ysis, respectively [Ginsberg et al., 2008]. Both data sources
are published with weekly granularity and with limited geo-
graphical resolution. While Gf includes 75 metropolitan ar-
eas served by our 100 airports, CDC operates at the resolution
of U.S. states at the finest level. By contrast, our methods pro-
vide real-time flu signal with spatial resolution limited only
by the accuracy of the GPS sensor in people’s mobile devices
(typically under 100 meters).

Background
Support vector machine (SVM) is an established model of
data in machine learning [Cortes and Vapnik, 1995]. We learn
an SVM for linear binary classification to accurately distin-
guish between tweets indicating the author is afflicted by an
ailment and all other tweets. Linear binary SVMs are trained
by finding a hyperplane defined by a normal vector w with
the maximal margin separating it from the positive and neg-
ative datapoints. Finding such a hyperplane is inherently a

2https://dev.twitter.com/docs/api
3http://www.cdc.gov/flu/weekly/
4http://www.google.org/flutrends/

quadratic optimization problem given by the following ob-
jective function that can be solved efficiently and in a parallel
fashion using stochastic gradient descent methods [Shalev-
Shwartz et al., 2007].

min
w

λ

2
||w||2 ` Lpw,Dq (1)

where λ is a regularization parameter controlling model com-
plexity, and Lpw,Dq is the hinge-loss over all training data
D given by

Lpw,Dq “
ÿ

i

max
`

0, 1´ yiw
Txi

˘

(2)

Class imbalance, where the number of examples in one class
is dramatically larger than in the other class, complicates vir-
tually all machine learning. For SVMs, prior work has shown
that transforming the optimization problem from the space of
individual datapoints 〈xi, yi〉 in matrixD to one over pairs of
examples

〈
x`i ´ x

´
j , 1

〉
yields significantly more robust re-

sults [Joachims, 2005].
Regression analysis is a statistical technique of quantify-

ing the relationship between one or more independent vari-
ables and a dependent response variable. In this work, we ap-
ply a regularized least-squares regression model with elastic
net algorithm [Zou and Hastie, 2005]. This formalism encour-
ages grouping of strongly correlated independent variables,
and enables variable selection in a principled way.

Related Work
There is ample previous work in computational epidemiol-
ogy on building relatively coarse-grained models of disease
spread by harnessing simulated populations [Newman, 2002;
Grais et al., 2003; Eubank et al., 2004; Nicolaides et al.,
2012]. Such models are typically developed for the purposes
of assessing the impact a particular combination of an out-
break and a containment strategy would have on humanity.
Hollingsworth et al. (2007) present an interesting analysis of
the impact of frequent fliers. By evaluating a SEIR simula-
tion, they argue that these travelers could significantly accel-
erate an epidemic of a respiratory disease only if they get in-
fected early on in the outbreak. However, these works focus
on simulated populations and hypothetical scenarios. By con-
trast, we address the problem of predicting the health of real
world populations in real time—a step towards understanding
actual threats and ongoing disease outbreaks.

A seminal case study in traditional epidemiology focused
on recovering detailed contagion events by examining pas-
sengers and crew who had been delayed aboard an airliner
[Moser et al., 1979]. People’s location, encounters, and health
states were manually reconstructed by telephone surveys,
analysis of airline data, and medial examination. Such efforts
do not scale with 643 million individuals in almost 9 million
flights that take place annually in the U.S. alone. In this work,
we show that similar results can be achieved at scale by ap-
plying automated methods.

Researchers have concentrated on capturing the overall
trend of a particular disease outbreak, typically influenza, by
monitoring social media [Culotta, 2010; Lampos et al., 2010;



Chunara et al., 2012]. Freifeld et al. (2010) use informa-
tion actively submitted by cell phone users to model ag-
gregate public health. However, scaling such systems poses
considerable challenges. Other researchers focus on a more
detailed modeling of the language of the tweets and its
relevance to public health in general [Collier et al., 2011;
Paul and Dredze, 2011]. In our previous work, we have shown
that future health of an individual can be accurately predicted
from geo-tagged tweets on the basis of his or her interactions
with already infected people, including online friends and en-
countered strangers [Sadilek et al., 2012b].

Brownstein et al. (2006) find that the regional influenza
spread is associated with the volume of air travel in Novem-
ber prior to the flu season. Taking advantage of the sudden
reduction in air travel after the September 11 terrorist attacks,
the researchers show that the following flu season has been
delayed. While Brownstein et al. present an excellent analysis
of the impact of the bulk travel volume on the ensuing flu sea-
son, the mechanisms underlying this impact remain unclear—
a gap our work begins to fill. Their model explains 60% of the
yearly variance of influenza spread, whereas our approach ex-
plains 73% of weekly signal—a significantly harder problem.

Eubank et al. (2004) are beginning to leverage more
fine-grained information, including people’s activities. They
developed a simulation tool (EpiSims) that leverages
synthetic—but statistically realistic—human mobility to
study the spread of infectious diseases over a metropolitan
area. They show their simulation-based approach is a viable
alternative to the classical models formulated using differen-
tial equations. Eubank et al. demonstrate that their methods
enable accurate modeling of a hypothetical spread of disease
throughout a large, although in many ways artificial, popu-
lation. This knowledge can in turn be used to seek an opti-
mal emergency response policy. Using simulated scenarios,
researchers have shown that some airports specifically play a
more important role in the global pandemic than others, either
because of the sheer number of passengers passing though
them, or their connectedness to other airports [Colizza et al.,
2006; Epstein et al., 2007]. Simulations are used by prior
work to fill in missing data as well as to test possible future
outcomes of a contagion.

The primary contribution of this paper is a connection be-
tween local interactions between individuals and aggregate
patterns of disease spread without resorting to synthetic data.
We propose a novel way of modeling the emergence and evo-
lution of global epidemics from the behavior and mobility of
tens of thousand of individuals. We concentrate on the scala-
bility of our models both in terms of computational complex-
ity and human effort required. By applying machine learning
and statistical analysis to fine-grained online data, our frame-
work allows monitoring and predictions of flu prevalence in a
timely fashion and without active user participation.

Looking at an even more global scale, Bettencourt and
West (2010) argue for a comprehensive scientific approach to
urban planning. They show there are underlying patterns that
tie together the size of a city with its emergent characteris-
tics, such as crime rate, number of patents produced, walking
speed of its inhabitants, and prevalence of epidemics. The au-
thors argue that cities are the source of many major problems,

but also contain the solutions because of their concentrated
creativity and productivity.

Methodology and Models
In this section, we first discuss a method for automatic detec-
tion of Twitter users afflicted with an infectious disease using
text classification.5 We then verify that the flu signal inferred
from geo-tagged Twitter data agrees with established mea-
sures of flu prevalence. Subsequently, we propose and evalu-
ate a statistical model that captures people’s fine-grained mo-
bility, interactions, and health. The structure of this model
provides interesting insights into the mechanisms of global
spread of disease from the activities of individuals. Finally,
we leverage the statistical model to predict future flu activity
in specific cities. The following subsections describe each of
these steps in detail.

Identifying Sick Individuals
In order to quantify the impact of sick passengers on the
spread of flu, we first need to infer people’s health status,
and estimate the time when they became contagious. We
focus on self-reported symptoms and complaints that ap-
pear in the text of Twitter status updates. Building on pre-
vious work, we learn a linear support vector machine bi-
nary classifier C while directly optimizing the area under
the ROC curve [Joachims, 2005; Paul and Dredze, 2011;
Sadilek et al., 2012a]. This SVM is robust even in the pres-
ence of strong class imbalance, where for every health-related
message there are more than 1,000 unrelated ones. Since the
SVM operates in the space of English phrases containing up
to three words, it significantly outperforms less sophisticated
keyword-matching approaches and achieves 0.98 precision
and 0.97 recall [Sadilek et al., 2012a]. For example, C is not
confused by a message such as “I am sick of this homework,
it gives me a headache!” even though it contains potentially
misleading keywords.

Validating Twitter Health Signal (Tf )
A major deficiency of the Cf andGf measures is their coarse
(weekly) temporal granularity. This is problematic as the
spread of influenza-like illnesses is a highly dynamic pro-
cess [Moser et al., 1979]. We propose and evaluate a novel
measure of daily flu intensity on day d in region r using our
SVM-annotated twitter data

Tf pd, rq “
ÿ

uPUsersTweetingAtpd,rq

Prpu indicates sickness on day dq

where we convert SVM predictions into sickness probabili-
ties [Platt and others, 1999]. Tf approximates the expected
number of sick users on a given day in a given region.

To evaluate the relevance of Tf , we collected geo-tagged
tweets from five diverse metropolitan areas: New York City,
Los Angeles, Boston, Seattle, and San Francisco. Figure 2
shows that Tf is strongly correlated with official statistics:

5In this paper, such diseases include those with symptoms that
overlap with, but are not necessarily limited to, influenza-like illness
(http://en.wikipedia.org/wiki/Influenza-like illness). We will use the
term “flu” to refer to this class of ailments.
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Figure 2: Three independent measures of flu prevalence show
mutual agreement over a fourteen week time period. Tf (blue)
is our proposed Twitter flu index.

CDC index Cf (R “ 0.80, p-value: 0.002) and Google Flu
Trends Gf (R “ 0.87, p-value: 0.0002).

This agrees with prior work that finds a strong relation be-
tween signals relevant to flu-like disease mined from Twit-
ter, official statistics, and Google Flu Trends in a number of
countries [Culotta, 2010; Lampos et al., 2010]. Our experi-
ments below use all three signals (Cf , Gf , and Tf ) as depen-
dent variables in order to establish the predictability of official
coarse-grained statistics as well as fine-grained metrics on the
basis of social media data.

Understanding the Global Spread of Disease
We estimate the expected fraction of sick passengers ps flying
from airport x to y in a given time slice t:

Erpspt, xÑ yqs “
fspt, xÑ yq

fpt, xÑ yq
, (3)

where f denotes the total number of Twitter users flying be-
tween two airports and fs is the number of sick users on the
same route.

Since official RITA6 statistics for recent months are not
available at submission time, we estimate the deviation in the
number of passengers directly from Twitter data. We deter-
mine that a user flew from airport Ax to Ay on day d if he
tweeted at Ay on day d and appeared at Ax on either day d
or d ´ 1. Since we collect tweets within a three kilometers
of each airport, some of the users are not airplane passengers.
They could simply live nearby. However, by considering tar-
get users who appear in more than one airport, we obtain a
high-precision dataset of travelers.

Similarly, the influx of sick twitter users to airport x at time
t is given by

Ipt, xq “
ř

iPAirportszx f
spt, iÑ xq

ř

iPAirportszx
1
D

řD
d“1 f

spd, iÑ xq
. (4)

6Research and Innovative Technology Administration (RITA)
manages detailed airplane travel statistics for the U.S. Department
of Transportation: http://www.transtats.bts.gov/

Note that we express the influx as a fraction of a “typical day”
baseline to account for differences in the traffic volume across
geographical areas and times of day. While Erpss and I mea-
sure flow of passengers between airports, city-level statistics
are calculated by aggregating over all airports in the corre-
sponding metropolitan area.

Human contact is a crucial factor in the transmission of
infectious diseases. The GPS coordinates embedded in the
tweets allow us to estimate physical encounters (meetings)
between specific individuals. We say two users met if they
appear within 100 meters of each other within one hour. In
general, the granularity of the data does not allow detection of
specific meetings, but we do quantify the increased chance of
spreading an illness either by direct or indirect (e.g., as touch-
ing a seat at the gate) contact between people. As a result, we
can propagate health risk among users in our model.

While features involving total users flying are simple to
calculate, features involving sick users require machine learn-
ing in order to scale. As we will see, while features represent-
ing flight volume do explain a sizable fraction of the variance
in official flu statistics, features inferred from noisy data pro-
vide a significant improvement and make accurate predictions
possible.

There is an inherent time lag between contagion events and
an observed outbreak. This is due to complex mechanisms
involving incubation periods of the disease, the intensity of
human contact, prevention measures instituted by authorities,
and other factors. To model this delay, we formulate some
of our features over a spectrum of time intervals and time
offsets—ranging from a day to several weeks. Our model cap-
tures fine-grained geographical patterns (e.g., daily flu predic-
tions for a specific city) as well as coarse-grained aggregate
patterns (e.g., overall flu prevalence in the U.S.).

Limitations
Our observations are limited by the prevalence of public
tweets in which users talk about their health, and by our abil-
ity to identify them in the flood of other types of messages.
Both these factors contribute to the fact that the number of in-
fected individuals is underestimated, but evaluation by prior
work suggests that the latter effect is small [Sadilek et al.,
2012a]. Our observations also represent only a small fraction
of air travelers. RITA estimates that there were roughly 643
million enplaned passengers in 2012, meaning we capture
roughly 1/1,000 of them. However, the results in this paper
indicate that by modeling the latent effects, such a sampling
ratio is sufficient to accurately model public health across a
large number of metropolitan areas. We note that currently
used methods suffer from similar challenges as well. For ex-
ample, infected people who do not visit a doctor, or do not
respond to surveys are virtually invisible to the traditional
methods.

About 12% of all U.S. adults use Twitter, but the user base
skews towards younger, more urban people as compared to
the general population [Smith and Bruenner, 2012]. Since the
demographics of airplane travelers—who we approximate by
Twitter users—are biased in similar ways, the skewing ef-
fect is mitigated [POST, 2000]. We believe our methods of
automated text analysis coupled with fine-grained location



data is a valuable complement to traditional survey-based ap-
proaches to human behavior modeling. Users behave natu-
rally because they are unaware they participate in a study.
Moreover, the GPS data allows us to infer physical encounters
even between individuals who have not noticed each other.
For example, they are simply strangers sitting next to each
other at the gate, waiting for their flight to begin boarding.

Experiments and Results
Flight Volume. It has been shown that aggregate air traf-
fic volume can be a significant indicator of disease spread
[Brownstein et al., 2006; Colizza et al., 2006]. We begin with
regression analysis that considers only passenger features
without regard for health state of each individual. Namely,
we focus on the total number of users we observe flying be-
tween two airports (f ). We compute these statistics across a
spectrum of daily, weekly, and monthly time intervals and off-
sets as described above. We find that these features (which do
not require AI techniques) account for 56% of the variance
in the official Google Flu Trends data. As we will see, this is
not enough to do reliable prediction that can guide important
decisions.

Modeling Latent Health Features. By augmenting the
model with features I that leverage latent information in-
ferred by the SVM, the regression model explains 73% of the
variance in Google Flu Trends. This is a significant improve-
ment of 17 percentage points of variance explained, a nearly
30% improvement over previously considered methods. In-
terestingly, by modeling only the latent features and none of
the non-sickness features, the amount of variance explained
remains 73%. This shows that the raw passenger volume data
does not explain any additional signal and is completely su-
perseded by the latent factors. Statistics on sick travelers in
the seven days preceding the day for which we make a predic-
tion are the most dominant—explaining 71% of the variance
alone.

Modeling Meetings. Thus far, we have ignored the effect
of physical encounters between individuals. We now intro-
duce an additional feature Mpt, xq that counts the number
of meetings between people traveling to airport x at time t.
These exposure events are counted along the entire journey
of each traveler including the final destination. IncludingM
in the model explains additional 5% of the variance. Cru-
cially, accounting for meetings without regard for health state
of each individual does not explain any additional variance.

Predicting Disease Spread. We now turn to predicting fu-
ture levels of flu prevalence in a specific area based on the
flow of airplane travelers and their interactions. We learn a
linear regression model that predicts Tf on a given day by
leveraging features mentioned above (f , I, andM) over the
preceding three days. Since the model operates with standard-
ized variables, a single set of parameters captures all the cities
in our dataset.

We compare the prediction made by our model that explic-
itly takes into account health of individual travelers to a base-
line model that is oblivious people’s health states. Otherwise,
the baseline model uses the same type of features. We evalu-
ate the model by predicting the last seven days in the dataset

(a peak of this season’s flu epidemic), while training on the
remainder of the data. The health-conscious model is signifi-
cantly more accurate—achieving 93% accuracy within a 95%
confidence interval. By contrast, the baseline model is only
88% accurate at the same confidence level.

Conclusions and Future Work
Understanding the subtle mechanisms of epidemics is a major
challenge for the field of computational sustainability. This
paper explores prediction of the global spread of an infectious
disease on the basis of fine-grained social network data—
an important instance of the general problem of modeling
emergent properties of large real-world dynamical systems.
We use geo-tagged status updates of Twitter users as a noisy
proxy for the flux of people into and out of a city. Instead of
looking at simple statistics, such as the number of airplane
passengers flying into a city, we apply machine learning to
people’s messages and infer important latent variables. This
includes the volume of sick passengers, the number of people
they physically encountered, and other features. We quantify
the impact of a number of otherwise elusive factors on flu
outbreaks, and show that flu prevalence in a given area can
be accurately predicted by modeling people’s mobility, while
keeping track of their health over time with fine granularity.

Future work will focus on explicit modeling of the mecha-
nisms underlying individuals’ health states. Building on prior
work on simulated populations, each person can be in a sus-
ceptible, infected, recovered, or other state. While the true
state can only be observed when the person visits a doctor’s
office, we can model this latent variable using AI techniques
by leveraging indirect evidence. In this work, we consid-
ered two states—healthy (susceptible) and sick (infected)—
that are inferred from people’s online communication. A
promising direction for future work is to formulate important
epidemiological problems as probabilistic graphical models.
These models would be informed by timely evidence ex-
tracted from social media and the web at large. This paper
makes the first steps in this direction and opens novel chal-
lenges. We hope that this will stimulate further collaboration
of AI researchers and the broader scientific community on
important interdisciplinary problems.
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