
Understanding the Power of Clause Learning

Paul Beame∗ Henry Kautz∗ Ashish Sabharwal∗

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

{beame,kautz,ashish}@cs.washington.edu

Abstract

Efficient implementations of DPLL with the addi-
tion of clause learning are the fastest complete sat-
isfiability solvers and can handle many significant
real-world problems, such as verification, planning,
and design. Despite its importance, little is known
of the ultimate strengths and limitations of the tech-
nique. This paper presents the first precise charac-
terization of clause learning as a proof system, and
begins the task of understanding its power. In par-
ticular, we show that clause learning using any non-
redundant scheme and unlimited restarts is equiva-
lent to general resolution. We also show that with-
out restarts but with a new learning scheme, clause
learning can provide exponentially smaller proofs
than regular resolution, which itself is known to be
much stronger than ordinary DPLL.

1 Introduction
In recent years the task of deciding whether a CNF propo-
sitional logic formula is satisfiable has gone from a problem
of theoretical interest to a practical approach for solving real-
world problems. SAT procedures are now a standard tool for
hardware verification, including verification of super-scalar
processors [Velev and Bryant, 2001; Biere et al., 1999]. Open
problems in group theory have been encoded and solved using
satisfiability [Zhang and Hsiang, 1994]. Other applications of
SAT include circuit diagnosis and experiment design [Konuk
and Larrabee, 1993; Gomes et al., 1998b].

The most surprising aspect of such relatively recent practi-
cal progress is that the best complete satisfiability testing al-
gorithms remain variants of the DPLL procedure [Davis and
Putnam, 1960; Davis et al., 1962] for backtrack search in the
space of partial truth assignments. The main improvements
to DPLL have been better branch selection heuristics (e.g.,
[Li and Anbulagan, 1997]), and extensions such as random-
ized restarts [Gomes et al., 1998a] and clause learning. One
can argue that clause learning has been the most significant
of these in scaling DPLL to realistic problems.

Clause learning grew out of work in AI on explanation-
based learning (EBL), which sought to improve the perfor-

∗ Research supported by NSF Grant ITR-0219468

mance of backtrack search algorithms by generating expla-
nations for failure (backtrack) points, and then adding the
explanations as new constraints on the original problem [de
Kleer and Williams, 1987; Stallman and Sussman, 1977;
Genesereth, 1984; Davis, 1984]. For general constraint sat-
isfaction problems the explanations are called “conflicts”
or “no goods”; in the case of Boolean CNF satisfiability,
the technique becomes clause learning. A series of re-
searchers [Bayardo Jr. and Schrag, 1997; Marques-Silva
and Sakallah, 1996; Zhang, 1997; Moskewicz et al., 2001;
Zhang et al., 2001] showed that clause learning can be ef-
ficiently implemented and used to solve hard problems that
cannot be approached by any other technique.

Despite its importance there has been little work on formal
properties of clause learning, with the goal of understanding
its fundamental strengths and limitations. A likely reason for
such inattention is that clause learning is a rather complex
rule of inference – in fact, as we describe below, a complex
family of rules of inference. A contribution of this paper is
that we provide a precise specification of clause learning.

Another problem in characterizing clause learning is defin-
ing a formal notion of the strength or power of a reason-
ing method. This paper uses the notion of proof complex-
ity [Cook and Reckhow, 1977], which compares inference
systems in terms of the sizes of the shortest proofs they sanc-
tion. A family of formulas C provides an exponential sep-
aration between systems S1 and S2 if the shortest proofs of
formulas in C in system S1 are exponentially smaller than the
corresponding shortest proofs in S2. From this basic proposi-
tional proof complexity point of view, only families of unsat-
isfiable formulas are of interest, because only proofs of unsat-
isfiability can be large; minimum proofs of satisfiability are
linear in the number of variables of the formula. Neverthe-
less, Achlioptas et al [2001] have shown how negative proof
complexity results for unsatisfiable formulas can be used to
derive time lower bounds for specific inference algorithms
running on satisfiable formulas as well.

Proof complexity does not capture everything we intu-
itively mean by the power of a reasoning system, because it
says nothing about how difficult it is to find shortest proofs.
However, it is a good notion with which to begin our anal-
ysis, because the size of proofs provides a lower-bound on
the running time of any implementation of the system. In the
systems we consider, a branching function, which determines

which variable to split upon or which pair of clauses to re-
solve, guides the search. A negative proof complexity result
for a system tells us that a family of formulas is intractable
even with a perfect branching function; likewise, a positive
result gives us hope of finding a branching function.

A basic result in proof complexity is that general resolution
is exponentially stronger than the DPLL procedure [Bonet et
al., 2000; Ben-Sasson et al., 2000]. This is because the trace
of DPLL running on an unsatisfiable formula can be con-
verted to a tree-like resolution proof of the same size, and
tree-like proofs must sometimes be exponentially larger than
the DAG-like proofs generated by general resolution. Al-
though resolution can yield shorter proofs, in practice DPLL
is better because it provides a more efficient way to search for
proofs. The weakness of the tree-resolution proofs that DPLL
finds is that they do not reuse derived clauses. The conflict
clauses found when DPLL is augmented by clause learning
correspond to reuse of derived clauses in the associated res-
olution proofs and thus to more general forms of resolution
proofs. An intuition behind the results in this paper is that
the addition of clause learning moves DPLL closer to general
resolution while retaining its practical efficiency.

It has been previously observed that clause learning can be
viewed as adding resolvents to a tree-like proof [Marques-
Silva, 1998]. However, this paper provides the first mathe-
matical proof that clause learning is exponentially stronger
than tree-like resolution. Further, we provide a family of for-
mulas that exponentially separates clause learning from reg-
ular resolution, a system that is known to be intermediate in
strength between general and tree resolution. The proof uses
a new clause learning scheme called FirstNewCut that we in-
troduce. We also show that combining clause learning with
restarts is as strong as general resolution.

Although this paper focuses on basic proof complexity, we
briefly indicate how the understanding we gain through this
kind of analysis may lead to practical applications. For exam-
ple, our proofs describe an improvement to the clause learn-
ing rules previously suggested in the literature, and suggest
an approach to leveraging the structure of a problem encoded
as a CNF formula in order to create a branching heuristic that
takes the greatest advantage of clause learning. As an ex-
ample, we apply these ideas to certain natural satisfiable and
unsatisfiable formulas where we obtain significant speed-ups
over existing methods.

2 Preliminaries

A CNF formula F is an AND (∧) of clauses, where each
clause is an OR (∨) of literals, and a literal is a variable or
its negation (¬). It is natural to think of F as a set of clauses
and each clause as a set of literals. A clause that is a subset
of another is called its subclause.

Let ρ be a partial assignment to the variables of F . The
restricted formula F |ρ is obtained from F by replacing vari-
ables in ρ with their assigned values. F is said to be simplified
if all clauses with at least one TRUE literal are deleted, all oc-
currences of FALSE literals are removed from clauses, and the
resulting formula, if different, is simplified recursively.

2.1 The DPLL Procedure
The basic idea of the Davis-Putnam-Logemann-Loveland
(DPLL) procedure [Davis and Putnam, 1960; Davis et al.,
1962] for testing satisfiability of CNF formulas is to branch
on variables, setting them to TRUE or FALSE, until either an
initial clause is violated (i.e. has all literals set to FALSE) or all
variables have been set. In the former case, we backtrack to
the last branching decision whose other branch has not been
tried yet, reverse the decision, and proceed recursively. In the
latter, we terminate with a satisfying assignment. If all pos-
sible branches have been unsuccessfully tried, the formula
is declared unsatisfiable. To increase efficiency, pure liter-
als (those whose negation does not appear) and unit clauses
(those with only one unset literal) are immediately set to true.

Definition 1. A branching sequence for a CNF formula F is
a sequence σ = (l1, l2, . . . , lk) of literals of F , possibly with
repetitions. DPLL on F branches according to σ if it always
picks the next variable v to branch on in the literal order given
by σ, skips it if v is currently assigned a value, and branches
further by setting the chosen literal to FALSE otherwise.

In this paper, we will use the term DPLL to denote the ba-
sic branching and backtracking procedure described above. It
will, for instance, not include extensions such as learning con-
flict clauses or restarting, but will allow intelligent branching
heuristics. Note that this is in contrast with the occasional use
of the term DPLL to encompass practically all branching and
backtracking approaches, including those involving learning.

2.2 Resolution
Resolution is a simple proof system that can be used to prove
unsatisfiability of CNF formulas. The resolution rule states
that given clauses (A∨x) and (B∨¬x), we can derive clause
(A ∨ B) by resolving on x. A resolution derivation of C
from a CNF formula F is a sequence π = (C1, C2, . . . , Cs ≡
C) where each clause Ci is either a clause of F (an initial
clause) or derived by applying the resolution rule to Cj and
Ck, j, k < i (a derived clause). The size of π is s, the number
of clauses occurring in it. We will assume that each Cj 6= C
in π is used to derive at least one other clause Ci, i > j.
Any derivation of the empty clause Λ from F , also called a
refutation or proof of F , shows that F is unsatisfiable.

Despite its simplicity, resolution is not efficiently imple-
mentable due to the difficulty of finding good choices of
clauses to resolve; natural choices typically yield huge stor-
age requirements. Various restrictions on the structure of res-
olution proofs lead to less powerful but easier to implement
variants such as tree-like, regular, linear and positive resolu-
tion. Tree-like resolution uses non-empty derived clauses ex-
actly once in the proof and is equivalent to an optimal DPLL
procedure. Regular resolution allows any variable to be re-
solved upon at most once along any “path” in the proof from
an initial clause to Λ. Both these variants are sound and com-
plete but differ in efficiency – regular resolution is known to
be exponentially stronger than tree-like [Bonet et al., 2000;
Ben-Sasson et al., 2000], and general resolution is exponen-
tially stronger than regular [Alekhnovich et al., 2002].

Definition 2. A resolution derivation (C1, C2, . . . , Ck) is
trivial iff all variables resolved upon are distinct and each

Ci, i ≥ 3, is either an initial clause or is derived by resolving
Ci−1 with an initial clause.

A trivial derivation is tree-like as well as regular. More-
over, the condition that each derived clause Ci use Ci−1 in its
derivation makes it linear. As we will see, trivial derivations
correspond to conflicts in clause learning algorithms.

3 Clause Learning
Clause learning proceeds by following the normal branching
process of DPLL until there is a “conflict” after unit propaga-
tion. If this conflict occurs without any branches, the formula
is declared unsatisfiable. Otherwise, the “conflict graph” is
analyzed and the “cause” of the conflict is learned in the form
of a “conflict clause.” We now backtrack and continue as
in ordinary DPLL, treating the learned clause just like initial
ones. A clause is said to be known at a stage if it is either
an initial clause or has already been learned. The learning
process is expected to save us from redoing the same compu-
tation when we later have an assignment that causes conflict
due in part to the same reason.

If a given CNF formula F is unsatisfiable, clause learn-
ing terminates with a conflict without any branches. Since
all clauses used in this conflict themselves follow directly or
indirectly from F , this failure of clause learning in finding a
satisfying assignment constitutes a logical proof of unsatisfi-
ability of F . Our bounds compare the size of such a proof
with the size of a (possibly restricted) resolution proof of un-
satisfiability of F .

Variations of such conflict driven learning [Bayardo Jr.
and Schrag, 1997; Marques-Silva and Sakallah, 1996; Zhang,
1997; Moskewicz et al., 2001; Zhang et al., 2001] include
different ways of choosing the clause to learn and possibly
allowing multiple clauses to be learned from a single con-
flict. Although many such algorithms have been proposed
and demonstrated to be empirically successful, a theoretical
discussion of the underlying concepts and structures needed
for our bounds is lacking. The rest of this section focuses on
this formal framework.

Definition 3. A clause learning proof π of an unsatisfiable
CNF formula F under scheme S and induced by branching
sequence σ is the result of applying DPLL with unit propa-
gation on F , branching according to σ, and using scheme S
to learn conflict clauses such that at the end of this process,
there is a conflict without any branches. The size of the proof,
size(π), is |σ|.

All clause learning algorithms discussed in this paper are
based on unit propagation, which is the process of repeat-
edly applying the unit clause rule followed by formula sim-
plification until no clause with exactly one unassigned literal
remains. In this context, it is convenient to work with resid-
ual formulas at different stages of DPLL. Let ρ be the partial
assignment at some stage of DPLL on formula F . The resid-
ual formula at this stage is obtained by simplifying F |ρ and
applying unit propagation.

When using unit propagation, variables assigned values
through the actual branching process are called decision vari-
ables and those assigned values as a result of unit propagation

are called implied variables. Decision and implied literals
are analogously defined. Upon backtracking, the last deci-
sion variable no longer remains a decision variable and might
instead become an implied variable depending on the clauses
learned so far. The decision level of a decision variable x
is one more than the number of current decision variables at
the time of branching on x. The decision level of an implied
variable is the maximum of the decision levels of decision
variables used to imply it. The decision level at any step of
the underlying DPLL procedure is the maximum of the deci-
sion levels of all current decision variables.

3.1 Implication Graph and Conflicts
Unit propagation can be naturally associated with an impli-
cation graph that captures all possible ways of deriving all
implied literals from decision literals.

Definition 4. The implication graph G at a given stage of
DPLL is a directed acyclic graph with edges labeled with sets
of clauses. It is constructed as follows:

1. Create a node for each decision literal, labeled with that
literal. These will be the indegree zero root nodes of G.

2. While there exists a known clause C = (l1 ∨ . . . lk ∨ l)
such that ¬l1, . . . ,¬lk label nodes in G,

(a) Add a node labeled l if not already present in G.
(b) Add edges (li, l), 1 ≤ i ≤ k, if not already present.
(c) Add C to the label set of these edges. These edges

are thought of as grouped together and associated
with clause C.

3. Add to G a special node Λ. For any variable x which
occurs both positively and negatively in G, add directed
edges from x and ¬x to Λ.

Since all node labels in G are distinct, we identify nodes
with the literals labeling them. Any variable x occurring both
positively and negatively in G is a conflict variable, and x as
well as ¬x are conflict literals. G contains a conflict if it has
at least one conflict variable. DPLL at a given stage has a
conflict if the implication graph at that stage contains a con-
flict. A conflict can equivalently be thought of as occurring
when the residual formula contains the empty clause Λ.

By definition, an implication graph may contain many con-
flict variables and several ways of deriving any single literal.
To better understand and analyze a conflict, we work with a
subgraph, called the conflict graph (see Figure 1), that cap-
tures only one among possibly many ways of reaching a con-
flict from the decision variables. The choice of the conflict
graph is part of the strategy of the solver. It can also be
thought of as giving power to clause learning by adding non-
determinism.

Definition 5. A conflict graph H is any subgraph of an im-
plication graph with the following properties:

1. H contains Λ and exactly one conflict variable.

2. All nodes in H have a path to Λ.

3. Every node l in H other than Λ either corre-
sponds to a decision literal or has precisely the nodes
¬l1,¬l2, . . . ,¬lk as predecessors where (l1 ∨ l2 ∨ . . . ∨
lk ∨ l) is a known clause.

Consider the implication graph at a stage where there is a
conflict and fix a conflict graph contained in that implication
graph. Pick any cut in the conflict graph that has all decision
variables on one side, called the reason side, and Λ as well as
at least one conflict literal on the other side, called the con-
flict side. All nodes on the reason side that have at least one
edge going to the conflict side form a cause of the conflict.
The negations of the corresponding literals forms the conflict
clause associated with this cut.

Proposition 1. Every conflict clause corresponds to a cut in
a conflict graph that separates decision variables from Λ and
a conflict literal.

Proof. Let S denote the set containing the negations of the
literals of a given conflict clause C and pred(S) be the set of
all predecessors of these literals in the underlying implication
graph. Let T denote the set containing all literals obtained by
unit propagation after setting literals in S to TRUE. Since C
is a conflict clause, T must contain a conflict literal. Consider
the subgraph GS,T of the implication graph induced by Λ and
the literals in S ∪ pred(S) ∪ T , but having no edges going
from pred(S) to T . Fix any conflict graph that is a subgraph
of GS,T . The cut in this conflict graph with T as the conflict
side has C as the conflict clause.

Proposition 2. If there is a trivial resolution derivation of a
clause C from a set of clauses F , then setting all literals of C
to FALSE leads to a conflict.

Proof. Let π = (C1, C2, . . . , Ck ≡ C) be a trivial resolution
derivation of C from F . Assume without loss of generality
that clauses in π are ordered so that all initial clauses pre-
cede any derived clause. We give a proof by induction on the
number of derived clauses in π.

For the base case, π does not have any derived clauses.
Consequently, Ck ∈ F . Let Ck = (l1 ∨ l2 ∨ . . . ∨ lq) and ρ
be the partial assignment that sets all li, 1 ≤ i ≤ q, to FALSE.
Unit propagation using clause Ck with li, 1 ≤ i ≤ q − 1, set
to FALSE derives the literal lq . Since ¬lq is a decision literal
of ρ, lq serves as a conflict variable and we have a conflict.

When π does have derived clauses, Ck, by triviality of π,
must be derived by resolving Ck−1 with a clause in F . As-
sume without loss of generality that Ck−1 ≡ (A ∨ x) and
the clause from F used in this resolution step is (B ∨ ¬x),
where both A and B are subclauses of Ck. ρ falsifies all lit-
erals of B, implying x = FALSE by unit propagation. This in
turn results in falsifying all literals of Ck−1 because all liter-
als of A are also set to FALSE by ρ. Now (C1, . . . , Ck−1) is
a trivial resolution derivation of Ck−1 from F with one less
derived clause than π, and all literals of Ck−1 are falsified.
By induction, this must lead to a conflict.

Proposition 3. Any conflict clause can be derived from
known clauses using a trivial resolution derivation.

Proof. In the light of Proposition 1, assume that we have
a conflict clause associated with a cut σ in a fixed conflict
graph. Let Vconflict(σ) denote the set of variables on the
conflict side of σ, but including the conflict variable only if
it occurs both positively and negatively on the conflict side.

We will prove by induction on |Vconflict(σ)| the stronger
statement that the conflict clause associated with a cut σ
has a trivial derivation resolving precisely on the variables
in Vconflict(σ).

For the base case, Vconflict(σ) = φ and the conflict side
contains only Λ and a conflict literal, say x. The cause asso-
ciated with this cut consists of node ¬x that has an edge to Λ,
and nodes ¬l1,¬l2, . . . ,¬lk corresponding to a known clause
Cx = (l1 ∨ l2 ∨ . . . ∨ lk ∨ x) that each have an edge to x.
The conflict clause for this cut is simply the known clause Cx

itself, having a length zero trivial derivation.
When Vconflict(σ) 6= φ, pick a node y on the conflict side

all whose predecessors are on the reason side. Let the conflict
clause be C = (l1 ∨ l2 ∨ . . .∨ lp) and assume without loss of
generality that the predecessors of y are ¬l1,¬l2, . . . ,¬lk for
some k ≤ p. By definition of unit propagation, Cy = (l1∨l2∨
. . .∨lk∨y) must be a known clause. Obtain a new cut σ′ from
σ by pulling node y to the reason side. The new associated
conflict clause must be of the form C ′ = (¬y ∨ D), where
D is a subclause of C. Now Vconflict(σ

′) ⊂ Vconflict(σ).
Consequently, by induction, C ′ must have a trivial resolu-
tion derivation from known clauses resolving precisely upon
the variables in Vconflict(σ

′). Recall that no variable occurs
twice in a conflict graph except the conflict variable. Hence
Vconflict(σ

′) has exactly all variables of Vconflict(σ) except
y. Using this trivial derivation of C ′ and finally resolving
C ′ with the known clause Cy on variable y gives us a triv-
ial derivation of C from known clauses. This completes the
inductive step.

3.2 Different Learning Schemes
Different cuts separating decision variables from Λ and a con-
flict literal correspond to different learning schemes (see Fig-
ure 1. One can also create learning schemes based on cuts not
involving conflict literals at all [Zhang et al., 2001], but their
effectiveness is not clear. These will not be considered here.

It is insightful to think of the non-deterministic scheme as
the most general learning scheme. Here we pick the cut non-
deterministically, choosing, whenever possible, one whose
associated clause is not already known. Since we can re-
peatedly branch on the same last variable, non-deterministic
learning subsumes learning multiple clauses from a single
conflict as long as the sets of nodes on the reason side of the
corresponding cuts form a (set-wise) decreasing sequence.
For simplicity, we will assume that only one clause is learned
from any conflict.

In practice, however, we employ deterministic schemes.
The decision scheme [Zhang et al., 2001], for example, uses
the cut whose reason side comprises all decision variables.
rel-sat [Bayardo Jr. and Schrag, 1997] uses the cut whose
conflict side consists of all implied variables at the current de-
cision level. This scheme allows the conflict clause to have
exactly one variable from the current decision level, causing
an automatic flip in its assignment upon backtracking.

This nice flipping property holds in general for all unique
implication points (UIPs) [Marques-Silva and Sakallah,
1996]. A UIP of an implication graph is a node at the current
decision level d such that any path from the decision vari-
able at level d to the conflict variable as well as its negation

must go through it. Intuitively, it is a single reason at level
d that causes the conflict. Whereas rel-sat uses the de-
cision variable as the obvious UIP, GRASP [Marques-Silva
and Sakallah, 1996] and zChaff [Moskewicz et al., 2001]
use FirstUIP, the one that is “closest” to the conflict variable.
GRASP also learns multiple clauses when faced with a con-
flict. This makes it typically require fewer branching steps
but possibly slower because of the time lost in learning and
unit propagation.

The concept of UIP can be generalized to decision levels
other than the current one. The 1UIP scheme corresponds
to learning the FirstUIP clause of the current decision level,
the 2UIP scheme to learning the FirstUIP clauses of both the
current level and the one before, and so on. Zhang et al [2001]
present a comparison of all these and other learning schemes
and conclude that 1UIP is quite robust and outperforms all
other schemes they consider on most of the benchmarks.

FirstNewCut clause
(x1 ∨ x2 ∨ x3)

Decision clause
(p ∨ q ∨ ¬ b)

1UIP clause
t

rel-sat clause
(¬ a ∨ ¬ b)

¬ p

¬ q

b

a

¬ t

¬ x1

¬ x2

¬ x3

y

¬¬¬¬ y

Λ

Figure 1: A conflict graph depicting various learning schemes

The FirstNewCut Scheme
We propose a new learning scheme called FirstNewCut
whose ease of analysis helps us demonstrate the power of
clause learning. We would like to point out that we use this
scheme here only to prove our theoretical bounds. Its effec-
tiveness on other formulas has not been studied yet.

The key idea behind FirstNewCut is to make the con-
flict clause as relevant to the current conflict as possible by
choosing a cut close to the conflict literals. This is what the
FirstUIP scheme also tries to achieve in a slightly different
manner. For the following definitions, fix a cut in a conflict
graph and let S be the set of nodes on the reason side that
have an edge to some node on the conflict side (S is the rea-
son side frontier of the cut). Let CS be the conflict clause
associated with this cut.
Definition 6. Minimization of conflict clause CS is the pro-
cess of repeatedly identifying, if one exists, a node v ∈ S, all
of whose predecessors are also in S, moving it to the conflict
side, and removing it from S.
Definition 7. FirstNewCut scheme: Start with a cut whose
conflict side consists of Λ and a conflict literal. If necessary,
repeat the following until the associated conflict clause, af-
ter minimization, is not already known: pick a node on the
conflict side, pull all its predecessors except those that cor-
respond to decision variables into the conflict side. Finally,
learn the resulting new minimized conflict clause.

This scheme starts with the cut that is closest to the con-
flict literals and iteratively moves it back toward the decision
variables until a new associated conflict clause is found. This
backward search always halts because the cut with all deci-
sion variables on the reason side is certainly a new cut. Note
that there are potentially several ways of choosing a literal to
move the cut back, leading to different conflict clauses. The
FirstNewCut scheme, by definition, always learns a clause
not already known. This motivates the following:
Definition 8. A clause learning scheme is non-redundant if
on a conflict, it always learns a clause not already known.

3.3 Fast Backtracking and Restarts
Most clause learning algorithms use fast backtracking where
one uses the conflict graph to backtrack not only the last
branching decision but also all other recent decisions that did
not contribute to the conflict [Stallman and Sussman, 1977].
This adds power to clause learning because the current con-
flict might use clauses learned earlier as a result of branching
on the apparently redundant variables. Hence, fast backtrack-
ing in general cannot be replaced by a “good” branching se-
quence that does not produce redundant branches. For the
same reason, fast backtracking cannot either be replaced by
simply learning the decision scheme clause. However, the re-
sults we present in this paper are independent of whether or
not fast backtracking is used.

Restarts allow clause learning algorithms to arbitrarily
restart their branching process. All clauses learned so far
are however retained and now treated as additional initial
clauses [Baptista and Silva, 2000]. As we will show, un-
limited restarts can make clause learning very powerful at
the cost of adding non-determinism. Unless otherwise stated,
clause learning proofs will be assumed to allow no restarts.

4 Clause Learning and General Resolution
Lemma 1. Let F be a CNF formula over n variables. If
F has a general resolution proof of size s, then it also has
a clause learning proof of size at most ns using any non-
redundant learning scheme and at most s restarts.

Proof. Let π = (C1, C2, . . . , Cs ≡ Λ) be a general resolu-
tion proof of F where each Ci is either an initial clause or
derived by resolving two clauses Cj and Ck, j, k < i, occur-
ring earlier in π. If π contains a derived clause Ci whose strict
subclause C ′

i can be derived by resolving two previously oc-
curring clauses, then we can replace Ci with C ′

i, do trivial
simplifications on further derivations that used Ci and obtain
another proof π′ of F of size at most s. Doing this repeat-
edly will remove all such redundant clauses and leave us with
a simplified proof no larger in size. Hence we will assume
without loss of generality that π has no such clause.

A clause learning proof of F can be constructed by choos-
ing derived clauses of π in order, learning each of them, and
restarting. Suppose every clause Ci, i < p, is already known
and we are at decision level zero. This is trivially true when
C1, . . . , Cp−1 are initial clauses. If p = s, there are two
known clauses x and ¬x whose resolution generates Cs ≡ Λ.
In this case we have a conflict from the known clauses at de-
cision level zero and our clause learning proof is complete.

Otherwise, let Cp = (l1 ∨ l2 ∨ . . . ∨ lk) and assume without
loss of generality that Cp is derived by resolving two known
clauses (A ∨ x) and (B ∨ ¬x), where both A and B are
subclauses of Cp. Our clause learning proof will choose to
branch on and set all of l1, l2, . . . , lk to FALSE. This will fal-
sify both A and B and thus imply both x and ¬x after unit
propagation, resulting in a conflict. It is easy to see that the
only new clause that can be learned from this conflict is Cp.
Accordingly, we will use any non-redundant learning scheme,
learn Cp and restart to get back to decision level zero. Due
to the non-redundancy of Cp assumed earlier in the proof,
there is no premature conflict until all of l1, l2, . . . , lk have
been branched upon. This makes sure that our clause learn-
ing proof proceeds as described above and we learn precisely
the clause Cp.

We learn at most s clauses and each learning stage requires
branching on at most n variables and exactly one restart. This
gives the desired bounds on the size of the constructed clause
learning proof and the number of restarts it uses.

Lemma 2. Let F be a CNF formula over n variables. If
F has a clause learning proof of size s using any learning
scheme and any number of restarts, then F also has a general
resolution proof of size at most ns.

Proof. Given a clause learning proof π of F , a resolution
proof can be constructed by sequentially deriving all clauses
that π learns, which includes the empty clause Λ. From
Proposition 3, all these derivations are trivial and hence re-
quire at most n steps each. Consequently, the size of the re-
sulting clause learning proof is at most ns. Note that since we
derive clauses of π individually, restarts in π do not change
the construction.

Combining Lemmas 1 and 2, we immediately get

Theorem 1. Clause learning with any non-redundant scheme
and unlimited restarts is equivalent to general resolution.

Note that this theorem strengthens the result from [Baptista
and Silva, 2000] that clause learning together with restarts is
complete. Our theorem makes the stronger claim that clause
learning with restarts can find proofs that are as short as those
of general resolution.

5 Clause Learning and Regular Resolution
Here we prove that clause learning even without restarts is
exponentially stronger than regular resolution on some for-
mulas. We do this by first introducing a way of extending any
CNF formula based on a given resolution proof of it. We then
show that if a formula exponentially separates general res-
olution from regular resolution, its extension exponentially
separates clause learning from regular resolution. Finally, we
cite specific formulas called GT ′

n that satisfy this property.

5.1 The Proof Trace Extension
Definition 9. Let F be a CNF formula and π be a resolution
refutation of it whose last step resolves v with ¬v. Let S =
π \ (F ∪{¬v,Λ}). The proof trace extension PT (F, π) of F
is a CNF formula over variables of F and new trace variables
tC for clauses C ∈ S. The clauses of PT (F, π) are all initial

clauses of F together with a trace clause (¬x ∨ tC) for each
clause C ∈ S and each literal x ∈ C.

We first show that if a formula has a short general reso-
lution refutation, then the corresponding proof trace exten-
sion has a short clause learning proof. Intuitively, the new
trace variables allow us to handle every resolution step of the
original proof individually, effectively letting us restart after
learning each derived clause.

Lemma 3. Let F be any CNF formula and π be a resolution
refutation of it. Then PT (F, π) has a clause learning proof
of size less than size(π) using the FirstNewCut scheme and
no restarts.

Proof. Let v be the variable resolved upon in the last step
of the resolution proof π and S = π \ (F ∪ {¬v,Λ}). Let
(C1, C2, . . . , Ck ≡ v) be the subsequence of π that has pre-
cisely the clauses in S. Assume without loss of generality
as in the proof of Lemma 1 that π does not contain a de-
rived clause Ci whose strict subclause C ′

i can be derived by
resolving two previously occurring clauses. We claim that
the branching sequence (tC1

, tC2
, . . . , tCk

) induces a clause
learning proof of F using the FirstNewCut scheme.

Suppose C1 = (x1 ∨ x2 ∨ . . . ∨ xl) and assume without
loss of generality that it was derived by resolving two previ-
ous clauses (A ∨ y) and (B ∨ ¬y), where both A and B are
subclauses of C1. The first branch tC1

= FALSE followed by
unit propagation results in implied literals ¬x1,¬x2, . . . ,¬xl

using trace clauses (¬xi ∨ tC1
). Further unit propagation us-

ing A and B implies y as well as ¬y and we have a con-
flict. The cut in the conflict graph containing y and ¬y
on the conflict side and everything else on the reason side
makes us learn C1 as the FirstNewCut conflict clause. We
now backtrack the branch on tC1

and continue. Subsequent
branches on tC2

, tC3
, . . . , tCk

similarly make us learn clauses
C2, C3, . . . , Ck.

We have now learned (or have as initial clauses) the clause
v as well as the two clauses used to derive ¬v in π. These gen-
erate Λ in the residual formula, leading to a conflict without
any branches and finishing the clause learning proof. Note
that the maximum decision level in this proof is 1.

Lemma 4. Let F be a CNF formula over n variables that
has a polynomial (in n) size general resolution proof π but
requires exponential size regular resolution proofs. Then
PT (F, π) has a polynomial size clause learning proof using
the FirstNewCut scheme and no restarts, but requires expo-
nential size regular resolution proofs.

Proof. Lemma 3 immediately implies that PT (F, π) has a
polynomial size FirstNewCut clause learning proof.

For the other part, we use a simple reduction argument.
Suppose PT (F, π) has a regular resolution refutation π′ of
size s. Consider the restriction ρ that sets every trace vari-
able of this formula to TRUE. ρ keeps original clauses of F
intact and trivially satisfies all trace clauses, thereby reduc-
ing the initial clauses of PT (F, π) to precisely F . Recall
that regularity of resolution proofs is preserved under arbi-
trary restrictions. Consequently, applying ρ to π′ gives us a
regular resolution refutation of F of size at most s. By the

assumption in the Lemma, s must be exponential in n. Note
that PT (F, π) itself is of size polynomial in n because of
our choice of π. Hence s is also exponential in the size of
PT (F, π) itself.

5.2 The GT ′

n
Formulas

We use the proof trace extension of an explicit family of un-
satisfiable CNF formulas called GT ′

n to obtain an exponen-
tial separation between regular resolution and clause learning.
Note that in place of GT ′

n, we could also have used any other
formulas satisfying the conditions on F in Lemma 4, such as
the modified pebbling formulas of Alekhnovich et al [2002].

The GT ′

n formulas are based on the ordering principle
that any partial linear ordering on the set {1, 2, . . . , n} must
have a maximal element. The original formulas, called GTn,
were first considered by Krishnamurthy [1985] and later
used by Bonet and Galesi [1999] to show the optimality of
the size-width relationship of resolution proofs. Recently,
Alekhnovich et al [2002] used GT ′

n to show an exponential
separation between general and regular resolution. We refer
the reader to this paper for exact specification of the GT ′

n for-
mulas. For our bound, we only need the following result:

Lemma 5 ([Alekhnovich et al., 2002]). GT ′

n has a polyno-
mial size general resolution refutation but requires exponen-
tial size regular resolution proofs.

Let πGT ′ be the polynomial size resolution refutation of
GT ′

n described in [Alekhnovich et al., 2002]. It follows from
Lemmas 4 and 5 that PT (GT ′

n, πGT ′) has a polynomial size
clause learning proof using the FirstNewCut scheme but re-
quires exponential size regular resolution proofs. Hence,

Theorem 2. There exist CNF formulas on which clause
learning using the FirstNewCut scheme and no restarts pro-
vides exponentially smaller proofs than regular resolution.

6 Experimental Results
Table 1 reports the performance of variants of zChaff on
grid pebbling formulas. We conducted experiments on a 1600
MHz Linux machine with memory limit set to 512MB. Base
code of zChaff was extended to allow a (partial) branching
sequence to be specified as part of the input. We used the
more popular 1UIP learning scheme of zChaff instead of
FirstNewCut because for these formulas, both schemes pro-
vide small proofs.

Pebbling formulas based on pebbling graphs are known to
be hard for tree-like resolution but easy for regular resolu-
tion [Ben-Sasson and Wigderson, 1999]. We refer the reader
to this paper for exact specification of the formulas. For our
experiments, we worked with a uniform, grid like version,
where every non-leaf node has precisely two predecessors.
For a k layer graph, the corresponding formula has O(k2)
variables and clauses. These formulas are minimally unsatis-
fiable. We also used a satisfiable version obtained by delet-
ing a randomly chosen clause. The branching sequence was
generated based on depth first traversal of the underlying peb-
bling graph. Results are reported for zChaff with no learn-
ing or specified branching sequence (DPLL), with specified
branching sequence only, with clause learning only (original
zChaff), and both.

Formula Runtime (seconds)
Solver layers variables unsat. satisfiable

5 30 0.24 0.12
DPLL 6 42 110 0.02

7 56 > 24 hrs 0.07
8 72 > 24 hrs > 24 hrs

Branch 5 30 0.20 0.00
sequence 6 42 105 0.00
only 7 56 > 24 hrs 0.00

9 90 > 24 hrs > 24 hrs
Clause 20 420 0.12 0.05
learning 40 1,640 59 36
only 60 3,660 65 14
(original 65 4,290 ‡ 47
zChaff) 70 4,970 ‡ ‡
Clause 40 1,640 0.04 0.04
learning 100 10,100 0.59 0.62
and 500 250,500 254 288
branch 1,000 1,001,000 4,251 5,335
sequence 1,500 2,551,500 21,103 ‡

Table 1: zChaff on pebbling formulas. ‡ denotes out of
memory

7 Discussion and Open Problems
This paper has begun the task of formally understanding the
power of clause learning from a proof complexity perspec-
tive. We have seen that clause learning can be more powerful
than even regular resolution, and that learning with restarts
yields general resolution.

In practice, a solver must employ good branching heuris-
tics as well as implement a powerful proof system. Our result
that modified pebbling formulas have small clause learning
proofs depends critically upon the solver choosing a branch-
ing sequence that solves the formula in “bottom up” fashion,
so that the learned clauses have maximal reuse. As we de-
scribe in a subsequent paper [Sabharwal et al., 2003], this
branching sequence can be efficiently generated by a combi-
nation of breadth-first and depth-first traversals of the original
pebbling graph even for more general classes of pebbling for-
mulas. As shown in Table 1, one needs both clause learning
as well as a good branching sequence to efficiently solve large
problem instances.

Of course, pebbling graphs, which correspond to problems
involving precedence of tasks, represent a narrow domain
of applicability. However, logic encodings of many kinds
of real-world problems, such as planning graphs [Kautz and
Selman, 1996], exhibit layered structure not unlike pebbling
graphs. An important direction of our current research is to
generate branching sequences that allow clause learning to
work well on the general classes of structures that arise in
encodings of particular problem domains.

Different learning schemes are likely to vary in their effec-
tiveness when used on formulas from different domains. We
introduced FirstNewCut as a new scheme and used it in this
paper to derive our theoretical results. How well it performs
on encodings of real-world problems is still open. It would
be interesting to know if there is a class of practical problems

on which FirstNewCut works better than other schemes.
This paper inspires but leaves open several interesting

questions of proof complexity. We have shown that with
arbitrary restarts, clause learning is as powerful as general
resolution. However, judging when to restart and deciding
what branching sequence to use after restarting adds more
non-determinism to the process, making it harder for prac-
tical implementations. Can clause learning with no or lim-
ited restarts also simulate general resolution efficiently? We
showed that there are formulas on which clause learning is
much more efficient than regular resolution. In general, can
every small regular refutation be converted into a small clause
learning proof? Or are regular resolution and clause learning
incomparable?

References
[Achlioptas et al., 2001] D. Achlioptas, P. Beame, and

M. Molloy. A sharp threshold in proof complexity. In 33rd
STOC, 337–346, 2001.

[Alekhnovich et al., 2002] M. Alekhnovich, J. Johannsen,
T. Pitassi, and A. Urquhart. An exponential separation be-
tween regular and general resolution. In 34th STOC, 448–
456, 2002.

[Baptista and Silva, 2000] L. Baptista and J. P. M. Silva. Us-
ing randomization and learning to solve hard real-world in-
stances of satisfiability. In Prin. and Prac. of Const. Prog.,
489–494, 2000.

[Bayardo Jr. and Schrag, 1997] R. J. Bayardo Jr. and R. C.
Schrag. Using CST look-back techniques to solve real-
world SAT instances. In 14th AAAI, 203–208, 1997.

[Ben-Sasson and Wigderson, 1999] E. Ben-Sasson and
A. Wigderson. Short proofs are narrow – resolution made
simple. In 31st STOC, 517–526, 1999.

[Ben-Sasson et al., 2000] E. Ben-Sasson, R. Impagliazzo,
and A. Wigderson. Near-optimal separation of treelike and
general resolution. Tech. Rep. TR00-005, Elec. Colloq. in
Comput. Compl., http://www.eccc.uni-trier.de/eccc/, 2000.

[Biere et al., 1999] A. Biere, A. Cimatti, E. M. Clarke,
M. Fujita, and Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In 36th DAC, 317–320, 1999.

[Bonet and Galesi, 1999] M. L. Bonet and N. Galesi. A
study of proof search algorithms for resolution and poly-
nomial calculus. In 40th FOCS, 422–432, 1999.

[Bonet et al., 2000] M. L. Bonet, J. L. Esteban, N. Galesi,
and J. Johansen, On the relative complexity of resolution re-
finements and cutting planes proof systems, SIAM J. Com-
put., 30 (2000), 1462–1484.

[Cook and Reckhow, 1977] S. A. Cook and R. A. Reck-
how, The relative efficiency of propositional proof systems,
J. Symb. Logic, 44 (1977), 36–50.

[Davis and Putnam, 1960] M. Davis and H. Putnam, A com-
puting procedure for quantification theory, CACM, 7
(1960), 201–215.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Love-
land, A machine program for theorem proving, CACM, 5
(1962), 394–397.

[Davis, 1984] R. Davis, Diagnostic reasoning based on struc-
ture and behavior, J. AI, 24 (1984), 347–410.

[de Kleer and Williams, 1987] J. de Kleer and B. C.
Williams, Diagnosing multiple faults, J. AI, 32 (1987),
97–130.

[Genesereth, 1984] R. Genesereth, The use of design de-
scriptions in automated diagnosis, J. AI, 24 (1984), 411–
436.

[Gomes et al., 1998a] C. P. Gomes, B. Selman, and
H. Kautz. Boosting combinatorial search through random-
ization. In 15th AAAI, 431–437, 1998.

[Gomes et al., 1998b] C. P. Gomes, B. Selman, K. McAloon,
and C. Tretkoff. Randomization in backtrack search: Ex-
ploiting heavy-tailed profiles for solving hard scheduling
problems. In 4th Int. Conf. Art. Intel. Planning Syst., 1998.

[Kautz and Selman, 1996] H. A. Kautz and B. Selman.
Pushing the envelope: Planning, propositional logic, and
stochastic search. In 13th AAAI, 1194–1201, 1996.

[Konuk and Larrabee, 1993] H. Konuk and T. Larrabee. Ex-
plorations of sequential ATPG using boolean satisfiability.
In 11th VLSI Test Symposium, 85–90, 1993.

[Krishnamurthy, 1985] B. Krishnamurthy, Short proofs for
tricky formulas, Acta Inf., 22 (1985), 253–274.

[Li and Anbulagan, 1997] C. M. Li and Anbulagan. Heuris-
tics based on unit propagation for satisfiability problems. In
IJCAI (1), 366–371, 1997.

[Marques-Silva and Sakallah, 1996] J. P. Marques-Silva and
K. A. Sakallah. Grasp – a new search algorithm for satisfi-
ability. In ICCAD, 220–227, 1996.

[Marques-Silva, 1998] J. Marques-Silva. An overview of
backtrack search satisfiability algorithms. In 5th Symp. on
AI and Math., 1998.

[Moskewicz et al., 2001] M. W. Moskewicz, C. F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In 38th DAC, 530–535, 2001.

[Sabharwal et al., 2003] A. Sabharwal, P. Beame, and
H. Kautz. Using problem structure for efficient clause learn-
ing. To appear in SAT, 2003.

[Stallman and Sussman, 1977] R. Stallman and G. J. Suss-
man, Forward reasoning and dependency-directed back-
tracking in a system for computer-aided circuit analysis,
J. AI, 9 (1977), 135–196.

[Velev and Bryant, 2001] M. Velev and R. Bryant. Effective
use of boolean satisfiability procedures in the formal veri-
fication of superscalar and vliw microprocessors. In 38th
DAC, 226–231, 2001.

[Zhang and Hsiang, 1994] H. Zhang and J. Hsiang. Solving
open quasigroup problems by propositional reasoning. In
Proceedings of the International Computer Symp., 1994.

[Zhang et al., 2001] L. Zhang, C. F. Madigan, M. H.
Moskewicz, and S. Malik. Efficient conflict driven learn-
ing in a boolean satisfiability solver. In ICCAD, 279–285,
2001.

[Zhang, 1997] H. Zhang. SATO: An efficient propositional
prover. In Int. Conf. on Auto. Deduc., LNAI, vol. 1249, 272–
275, 1997.

