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A Formal Theory of
Plan Recognition

Henry Alexander Kautz

Abstract

Research in discourse analysis, story understanding, and user modeling for
expert systems has shown great interest in plan recognition problems.  In a plan
recognition problem, one is given a fragmented description of actions performed by
one or more agents, and expected to infer the overall plan or scenario which explains
those actions.  This thesis develops the first formal description of the plan recognition
process.

Beginning with a reified logic of events, the thesis presents a scheme for
hierarchically structuring a library of event types.  A semantic basis for non-deductive
inference, called "minimum covering entailment", justifies the conclusions that one
may draw from a set of observed actions.   Minimum covering entailment is defined
by delineating the class of models in which the library is complete and the set of
unrelated observations is minimized.  An equivalent proof theory forms a preliminary
basis for mechanizing the theory.  Equivalence theorems between the proof and
model theories are presented.  Minimum covering entailment is related to a formalism
for non-monotonic inference known as "circumscription". Finally, the thesis describes
a number of algorithms which correctly implement the theory, together with a
discussion of their complexity.

The theory is applied to a number of examples of plan recognition, in domains
ranging from an operating system advisor to the theory of speech acts.   The thesis
shows how problems of medical diagnosis, a similar kind of non-deductive reasoning,
can be cast in the framework, and an example previously solved by a medical expert
system is worked out in detail.

The analyses provides a firm theoretical foundation for much of what is
loosely called "frame based inference", and directly accounts for problems of
ambiguity, abstraction, and complex temporal interactions, which were ignored by
previous work.  The framework can be extended to handle difficult phenomena such
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as errors, and can also be restricted in order to improve its computational properties in
specialized domains.



vii

Table of Contents

Curriculum Vita............................................................................................................... ii
Acknowledgments........................................................................................................... iii
Abstract ........................................................................................................................... v
List of Tables................................................................................................................... xii
List of Figures ................................................................................................................. xiii
Poèmes humoristiques sur l’AI ....................................................................................... xiv

Chapter 1
Introduction ..................................................................................................................... 1

1.1. Motivation .................................................................................................. 1
1.2. Overview of Thesis .................................................................................... 2
1.3. Related Work on Plan Recognition............................................................ 6

1.3.1.  Story Understanding..................................................................... 6
1.3.1.1. Psychological Modeling............................................... 6
1.3.1.2. Script Based Systems ................................................... 7
1.3.1.3. Abduction ..................................................................... 8

1.3.2.  Discourse...................................................................................... 10
1.3.2.1. Allen and Perrault........................................................... 10
1.3.2.2.  Extended Discourse....................................................... 11
1.3.2.3.  Cohen and Levesque ..................................................... 13

1.3.3.  Intelligent Computer Environments ............................................. 14
1.3.3.1. The MACSYMA Advisor ............................................ 14
1.3.3.2. A Smart Operating System:  Plan Parsing ................... 15

1.4. Related Work on Medical Diagnosis ......................................................... 16
1.4.1. INTERNIST and CADUCEUS................................................... 18
1.4.2. A Set Covering Model................................................................. 19

1.5. Related Work on Non-Deductive Inference ............................................... 19
1.5.1.  Probability Theory........................................................................ 20
1.5.2.  Default Logic................................................................................ 23
1.5.3. Circumscription........................................................................... 23

Chapter 2
Representing Event Hierarchies ...................................................................................... 27

2.1. Language .................................................................................................... 27
2.2. Representation of Time, Properties, and Events ........................................ 28
2.3. The Event Hierarchy .................................................................................. 30



viii

2.4. Components of Event Tokens .................................................................... 31
2.5. Acyclic Hierarchies & Compatible Types.................................................. 32
2.6. Example:  The Cooking World .................................................................. 32

2.6.1. Diagrammatic Form .................................................................... 33
2.6.2. The Abstraction Hierarchy .......................................................... 34
2.6.3. The Decomposition Hierarchy .................................................... 35
2.6.4. Describing Instances of Events ................................................... 36

2.7. Conditional Actions ................................................................................... 37
2.7.1. Representing Conditional Actions .............................................. 37
2.7.2. An Example................................................................................. 39

Chapter 3
Covering Models ............................................................................................................. 40

3.1 Model Minimization................................................................................... 40
3.2 Completing the Abstraction Hierarchy ...................................................... 41

3.2.1. Theorem 3.1 (Exhaustiveness) .................................................... 42
3.2.2. Theorem 3.5 (Disjointedness) ..................................................... 42
3.2.3. Theorem 3.7  (Unique Basic Types) ........................................... 42
3.2.4. Theorem 3.9  (Abstraction Completeness).................................. 42

3.3 Completing the Decomposition Hierarchy................................................. 43
3.3.1. Definition of Covering Model and C-Entailment ....................... 43
3.3.2. Theorem 3.10  (No Useless Events)............................................ 43
3.3.3. Theorem 3.11 (Component/Use)................................................. 43
3.3.4. Theorem 3.13  (No Infinite Chains) ............................................ 44
3.3.5. Theorem 3.14  (Decomposition Completeness) .......................... 44
3.3.6. Theorem 3.15  (Computability of C-Entailment)........................ 44
3.3.7. Theorem 3.16  (Not Predicate Completion) ................................ 44

3.4 Circumscription.......................................................................................... 45
3.4.1. Theorem 3.17  (C-entailment and Circumscription) ................... 45

3.5 Example:  The Cooking World, Continued................................................ 46
3.5.1. Exhaustiveness Assumptions (EXA) .......................................... 46
3.5.2. Disjointedness Assumptions (DJA) ............................................ 46
3.5.3. Component/Use Assumptions (CUA)......................................... 47
3.5.4. A Simple Recognition Problem .................................................. 49

Chapter 4
Minimum Covering Models ............................................................................................ 51

4.1. Cardinality Minimization ........................................................................... 51
4.1.1. Theorem 4.1  (Minimum Cardinality Defaults) .......................... 52

4.2. Cardinality Circumscription....................................................................... 53
4.2.1. Circumscription with Variables .................................................. 53



ix

4.2.2. Theorem 4.2  (Cardinality Circumscription)............................... 54
4.2.3. Example of Cardinality Circumscription .................................... 54

4.3. Example:  The Cooking World, Continued................................................ 56

Chapter 5
Incremental Recognition ................................................................................................. 58

5.1. Deficiencies in the MC Model ................................................................... 59
5.1.1. The Combinatorial Problem........................................................ 59
5.1.2. The Persistence Problem ............................................................. 59

5.2. Refining the Model..................................................................................... 61
5.2.1. Incrementally Minimize Cardinality ........................................... 61
5.2.2. Sticky Covers .............................................................................. 62
5.2.3. Discourse Clues........................................................................... 62
5.2.4. Likelihood Associations.............................................................. 62

5.3. Model Theory for Incremental Minimization ............................................ 63
5.3.1. Minimum Covering Submodels .................................................. 63

5.3.1.1. Definitions.................................................................... 64
5.3.1.2. Theorem 5.1  (Non-Universal Conclusions) ................ 64

5.3.2. Monotonic Incremental Recognition........................................... 65
5.3.2.1. Definitions.................................................................... 65
5.3.2.2. Theorem 5.2  (Incremental Recognition) ..................... 66

Chapter 6
Examples ......................................................................................................................... 67

6.1. The Cooking World, Once More................................................................ 67
6.2. Indirect Speech Acts................................................................................... 69

6.2.1. Representation............................................................................. 69
6.2.2. Assumptions................................................................................ 73
6.2.3. The Problem ................................................................................ 73

6.3. Operating Systems:  Multiple Events......................................................... 76
6.3.1. Representation............................................................................. 77
6.3.2. Assumptions................................................................................ 79
6.3.3. The Problem ................................................................................ 79

6.4. Medical Diagnosis...................................................................................... 84
6.4.1. Representation............................................................................. 84
6.4.2. Assumptions................................................................................ 86
6.4.3. The Problem ................................................................................ 88

Chapter 7
Algorithms for Plan Recognition .................................................................................... 91

7.1. Directing Inference..................................................................................... 91



x

7.2. Explanation Graphs .................................................................................... 93
7.2.1. Basic Elements of an E-Graph .................................................... 93
7.2.2. Roles of Event Types and of Nodes ............................................ 94
7.2.3. Definition of an Explanation Graph ............................................ 95

7.3. Computing the Uses of an Event Type....................................................... 97
7.3.1. Use Abstraction and Specialization............................................. 97
7.3.2. The Uses and Direct Component Relations ................................ 98
7.3.3. Definition of Uses ....................................................................... 98
7.3.4. Example....................................................................................... 100

7.4. Constraint Checking................................................................................... 100
7.4.1. Equality Constraints .................................................................... 101
7.4.2. Temporal Constraints .................................................................. 101
7.4.3. Fact Constraints........................................................................... 102

7.5. Overview of the Algorithms....................................................................... 102
7.5.1. Explain ........................................................................................ 102
7.5.2. Match........................................................................................... 103
7.5.3. Group........................................................................................... 104

7.6. Pseudo-Code............................................................................................... 104
7.6.1. Utility Functions.......................................................................... 104
7.6.2. Explain-Observation.................................................................... 105
7.6.3. Match-Graphs.............................................................................. 108
7.6.4. Group Observations..................................................................... 109

7.6.4.1. Non-Dichronic Version ................................................ 109
7.6.4.2. Incremental Minimization Version .............................. 110
7.6.4.3. Sticky Version .............................................................. 111

7.7. Description of Operation............................................................................ 112
7.7.1. Explain ........................................................................................ 112
7.7.2. Match........................................................................................... 114
7.7.3. Group........................................................................................... 117

7.8. Completeness & Correctness ..................................................................... 118
7.9. Complexity ................................................................................................. 119

7.9.1. Explain ........................................................................................ 119
7.9.2. Match........................................................................................... 120
7.9.3. Group........................................................................................... 120

7.10. Transcripts............................................................................................... 121

Chapter 8
Conclusions ..................................................................................................................... 123

8.1 The Three Levels........................................................................................ 123
8.2 Applicability............................................................................................... 124
8.3 Generality & Extensibility ......................................................................... 125
8.4 Two Unresolved Issues .............................................................................. 126



xi

References ....................................................................................................................... 128

Appendix A
Proofs for Chapter 3 ........................................................................................................ 134

Theorem 3.1 (Exhaustiveness) ............................................................................ 134
Theorem 3.2 ........................................................................................................ 135
Theorem 3.3 ........................................................................................................ 136
Theorem 3.4 ........................................................................................................ 137
Theorem 3.5 (Disjointedness) ............................................................................. 137
Theorem 3.6 ........................................................................................................ 139
Theorem 3.7  (Unique Basic Types) ................................................................... 140
Theorem 3.8 ........................................................................................................ 140
Theorem 3.9  (Abstraction Completeness).......................................................... 141
Theorem 3.10  (No Useless Events).................................................................... 142
Theorem 3.11 (Component/Use)......................................................................... 143
Theorem  3.12 ..................................................................................................... 144
Theorem 3.13  (No Infinite Chains) .................................................................... 145
Theorem 3.14  (Decomposition Completeness) .................................................. 145
Theorem 3.15  (Computability of C-Entailment)................................................ 147
Theorem 3.16  (Not Predicate Completion) ........................................................ 148
Theorem 3.17  (C-entailment and Circumscription) ........................................... 149

Appendix B
Proofs for Chapter 4 ........................................................................................................ 150

Theorem 4.1  (Minimum Cardinality Defaults) .................................................. 150
Theorem 4.2  (Cardinality Circumscription)....................................................... 151

Appendix C
Proofs for Chapter 5 ........................................................................................................ 155

Theorem 5.1  (Non-Universal Conclusions) ....................................................... 155
Theorem 5.2  (Incremental Recognition) ............................................................ 156

Appendix D
Temporal Constraint Logic ............................................................................................. 157

Appendix E
Transcripts....................................................................................................................... 160

Hunt/Rob Example.............................................................................................. 160
Cooking Examples .............................................................................................. 164
Operating System Examples ............................................................................... 172



xii

Language Examples ............................................................................................ 176

Appendix F
Details of Correctness Proof of Explain......................................................................... 184



xiii

List of Figures
1.1:  Hunt/Rob Hierarchy .............................................................................. 4

2.1:  Cooking Hierarchy ................................................................................ 44

6.1:  Language Use Hierarchy....................................................................... 87

6.2:  Operating System Hierarchy ................................................................. 93

6.3:  Medical Hierarchy................................................................................. 101

6.4:  Conclusions from Jaundice ................................................................... 104

6.5:  Conclusions from Pallor........................................................................ 105

6.6:  Conclusions from Jaundice and Pallor.................................................. 106

7.1:  E-Graph for MakeMarinara................................................................... 108

7.2:  Extended Cooking Hierarchy Detail ..................................................... 116

7.3:  Multiple Inheritance Hierarchy ............................................................. 122

7.4:  E-Graphs for MakeMarinara, MakeNoodles, and their Match ............. 135

7.5:  Combinatorially Explosive Hierarchy................................................... 141

E.1:  E-Graph for Get-Gun............................................................................ 183

F.1:  Relation of Ec(nc) to E0(n0)................................................................. 207

F.2:  Case 1.................................................................................................... 208

F.3:  Case 2.................................................................................................... 209

F.4:  Case 3.................................................................................................... 210



xiv

Poèmes humoristiques sur l’AI

If you're dull as a napkin, don't sigh;
Make your name as a "deep" sort of guy.

You just have to crib, see
Any old book by Kripke

And publish in AAAI.

A hacker who studied ontology
Was famed for his sense of frivolity

When his program inferred
That Clyde ISA bird

He blamed – not his code – but zoology.

If your thesis is utterly vacuous
Use first-order predicate calculus.

With sufficient formality
The sheerist banality

Will be hailed by the critics:  "Miraculous!"

If your thesis is quite indefensible
Reach for semantics intensional.

Your committee will stammer
Over Montague grammar

Not admitting it's incomprehensible.
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Chapter 1
Introduction

1.1. Motivation
Perhaps the central concern of Artificial Intelligence is to devise methods for

representing and reasoning about actions and plans.  While plan synthesis has
received careful formal analyses [McCarthy & Hayes 69], the inverse problem of plan
recognition (or action interpretation) has appeared in mainly empirical and domain-
specific programs of research.  These include work on story understanding [Bruce 81,
Wilensky 83], psychological modelling [Schmidt 78], natural language pragmatics
[Allen 83, Litman 84], intelligent computer system interfaces [Huff & Lesser 82], and
strategic planning.  In each case, one is given a fragmented, impoverished description
of the actions performed by one or more agents, and expected to infer a rich, highly
interrelated description.  The new description fills out details of the setting, and
relates the actions of the agents in the scenario to their goals and future actions.  The
result of the plan recognition process can be used to generate summaries of the
situation, to help (or hinder) the agent(s), and to build up a context for use in
disambiguating further observations.  This thesis develops a formal analysis of plan
recognition.  The analysis provides a firm foundation for much of what is loosely
called "frame based inference" [Minsky 75], and directly accounts for problems of
ambiguity, abstraction, and complex temporal interactions, which were ignored by
previous approaches.

Plan recognition problems can be classified as cases of intended or keyhole
recognition [Cohen, Perrault, & Allen 81].  In the first case, but not the second, the
observer can assume that the agent is deliberately structuring his activities in order to
make his intentions clear.  Recognition problems can also be classified as to whether
the observer has complete knowledge of the domain, and whether the agent may try to
perform erroneous plans [Pollack 86].  This thesis concentrates on keyhole
recognition of correct plans, where the observer has complete knowledge.  We will
consider, however, some examples from discourse, which are cases of intended
recognition.

An important preliminary step is to define the scope of inferences which must
be treated by a theory of plan recognition.  Plan synthesis can often be viewed as
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purely hypothetical reasoning (i.e., if I did A, then P would be true).  Some attempts
have been made [Charniak 85] to formalize plan recognition as a similar kind of
hypothetical reasoning:  infer a plan P, such that if the agent did P, then he would do
the observed action A.  Only a space of possible inferences is outlined, and little or
nothing is said about why one should infer one conclusion over another, or what one
should conclude if the situation is truly ambiguous.  (Such criticism also applies to
work based on "plausible" inference [Allen 83, Cohen 84, Pollack 86].)  We insist
that a theory of plan recognition specify what conclusions are absolutely justified on
the basis of the observations, our knowledge of actions, and other explicit
assumptions.  In fact, our framework allows one to draw conclusions based on the
class of simplest  plans which contain the observed actions.  Finally, while planning
can be formalized as pure deduction, to formalize plan recognition we must develop a
non-deductive, non-monotonic1 system of inference.

An advantage of this approach is that the model and proof theories apply to al-
most any situation.  They handle disjunctive information, multiple concurrent (and
unrelated) plans, steps "shared" between plans, abstract event descriptions, and both
incremental and non-incremental recognition.  The corresponding algorithmic theory
may place restrictions on the form of information handled in order to gain processing
efficiency.  The search for more general and efficient algorithms can continue without
the need to revise or reinvent the basic principles upon which the theory of
recognition is founded.

The vocabulary that has been used to describe plan recognition varies
considerably.  We will speak uniformly of observations as descriptions of events.  The
observer's knowledge is represented by a set of first-order statements called an event
hierarchy.  The result of the recognition process is a description of the end  events,
those which are self-contained and self-justifying, which make up the situation.  The
wide applicability of the event vocabulary suggests that this work is relevant to areas
of Artificial Intelligence not normally associated with planning or plan recognition,
such as diagnostic reasoning.  We will examine a simple medical-diagnosis problem
using our logical machinery.

1.2. Overview of Thesis

                                                
1A system is non-monotonic if some conclusions which may be drawn from a given set of assumptions
may no longer be drawn from a larger set of assumptions.
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An event hierarchy is a collection of restricted-form first-order axioms, used
to define the abstraction, specialization, and functional relationships between various
kinds of events.  The functional, or "role/value", relationships include the relation of
an event to its component subevents.  There is a distinguished type-predicate, End,
which holds of events which are not components of any other events.  Recognition is
the problem of classifying the End events which generate a set of observed events.
The second half of this chapter reviews research in plan recognition in many different
areas of Artificial Intelligence, as well as related work in non-monotonic inference.

Chapter 2 formally defines event hierarchies, and shows how they may be
used to represent hierarchically-structured plans of action.  It argues for the particular
method of representation, and describes the expressive limitations of alternative
systems.  Event hierarchies can encode conditional actions without additional
machinery.  A hierarchy of actions involved in cooking is developed in detail, and
serves as a basis for examples throughout the rest of the thesis.

An event hierarchy does not, however, by itself justify inferences from obser-
vations to End events.  The lexical hierarchy justifies deductions from an event to its
components; it does not rule out the possibility that those components may occur
without reference to any of the End events mentioned in the hierarchy.  Consider the
following example.  (The thick grey arrows denote abstraction or "isa", and the thin
black arrows denote component or "has part".)

End

Go To Woods Get Gun Go To Bank

Hunt Rob Bank Cash Check

s2 s1 s2s1 s1

Go Hiking

s1

figure 1.1:  Hunt/Rob Hierarchy

Suppose GetGun(C) is observed.  This statement, together with the hierarchy, H, does
not entail ∃x . Hunt(x), or  ∃x . Hunt(x) ∨ RobBank(x), or even ∃x . End(x).  There
are models of {GetGun(C)} ∪ H in which none of these statements hold.  For
instance (where we describe a model by listing its positive atoms), none hold in
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{GetGun(C)}, and only the last in {GetGun(C), CashCheck(D), GoToBank(s1(D)),
End(D)}.

Yet it does seem reasonable to conclude that someone is either hunting or rob-
bing a bank, on the basis of the given hierarchy.  This conclusion is justified by as-
suming that the event hierarchy is complete: that is, whenever a non-End event
occurs, it must be part of some other event, and the relationship from event to
component appears in the hierarchy.  This completeness assumption can be expressed
by defining a special subclass of models of H, called "covering models".  For the
example, {GetGun(C), C=s1(D), Hunt(D), GoToWoods(s2(D)), End(D)} and
{GetGun(C), C=s1(D), RobBank(D), GoToBank(s2(D)), End(D)} are covering
models of H, but none of the other models described above are.

Chapter 3 uses the notion of a covering model is used to define a new
semantic relation, called c-entailment.  In this example,  hunting or bank robbing
occurs in all covering models in which an agent gets a gun, or formally:

GetGun(C) Hº=c ∃x . Hunt(x) ∨ RobBank(x)

The second part of that chapter relates c-entailment to ordinary entailment and deduc-
tion.  An easily-computed "closure" function cl is defined, with the property that a
statement is c-entailed by an observation if and only if that statement deductively fol-
lows from the observation and the closure of the event hierarchy.  That is,

Γ  Hº=c Ω    if and only if   Γ ∪ cl(H) º− Ω 

Thus cl(H) axiomatically captures the class of covering models; or, equivalently, ex-
plicitly states the closure assumptions in effect when one uses an event hierarchy for
recognition.  The theory of c-entailment is related to John McCarthy's system of non-
monotonic inference known as circumscription.

When several events are observed, still stronger assumptions are commonly
employed.  Suppose that {GetGun(C), GoToBank(D)} is observed.  This set does not
c-entail an instance of robbery; the model containing an instance of hunting and an in-
stance of check cashing provides a counterexample.  By Occam's razor (do not
multiply entities unnecessarily) we would be justified in concluding ∃x . RobBank(x);
this principle can be realized by distinguishing the minimum covering models of the
observations.  These models define a final semantic relation between observations and
conclusions, mc-entailment.  In the example,
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{GetGun(C), GoToBank(D)} Hº=mc ∃x . RobBank(x) ∧ C=s1(x) ∧ D=s2(x)

Chapter 4 develops the theory of minimum covering models and mc-entailment.  Mc-
entailment is shown to correspond to a particular case of circumscription with
variables.

Chapter 5 extends the theory to describe incremental plan recognition.  An in-
cremental recognition process cyclically makes observations and infers consequences.
The conclusions reached at the end of any particular cycle form the basis for those
reached in the next cycle.  Incremental recognition is dichronic:  the conclusions
reached may depend upon the order of the observations.  While this may make it non-
optimal for some recognition problems, we shall argue that it is a plausible
description, on both computational and psychological grounds, of the kind of
inference performed in plan recognition and its applications.

This formal framework shows how one can infer "up" an event hierarchy, and
unify the explanations of several observations in order to reach a stronger conclusion.
Very few restrictions are placed on the kinds of events which can be encoded:
disjunctions may appear in plans or in observations, observations may be incomplete,
and arbitrary temporal constraints may appear between events.  Several examples of
plan recognition are discussed in detail in Chapter 6, from the domains of cooking,
natural language pragmatics, and operating system interfaces.  The chapter concludes
with a comparison of plan recognition to medical diagnosis.   Diseases can be taken to
be End events, and symptoms to be component events.  A problem handled by a
version of INTERNIST, a medical expert system, is recast in our framework.

Traditional work in artificial intelligence on high level2 recognition problems
has often relied on graph-matching algorithms.  A lexical hierarchy is very naturally
represented as a labeled digraph, and such graphs can be given a straightforward se-
mantic interpretation.  Chapter 7 describes some graph-based recognition algorithms
which are justified by the notion of mc-entailment:  that is, they compute structures
which can be interpreted as statements true in all minimum covering models.  The
algorithms are useful and interesting in that they suggest what conclusions should be
drawn, while the formal framework only specifies what conclusions can be drawn.
There are three basic algorithms.  The first constructs an AND/OR graph bottom up,
                                                
2High level recognition problems involve the application of a great deal of specific world knowledge
to a relatively small amount of symbolic (non-numeric) data.  Low level recognition problems reverse
this situation:  there is a massive amount of quantitative data, interpreted by general principles about
the physical nature of the domain.
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from each observation to an instance of End.  The second minimizes the set of End
events, by performing a top-down match of the structures created in the previous step.
The third algorithm controls the first two, and decides which observations are part of
the same of End event.  Has the framework's power and generality been bought at the
cost of computational intractability?  We believe not.  While it is easy to show that
the worst-case cost of solving a plan recognition problem matches that of general
deduction (namely, exponential on the size of the knowledge base), careful use of
event abstraction significantly collapses the search space.

1.3. Related Work on Plan Recognition
Work in A.I. on plan recognition has concentrated on story understanding, dis-

course, and intelligent computer interfaces and environments.  Each area is reviewed
in roughly chronological order.

1.3.1.  Story Understanding

1.3.1.1. Psychological Modeling

One of the first papers to explicitly invoke the phrase "plan recognition" was
the report by [Schmidt, Sridharan, & Goodson 78] on the BELIEVER system.
BELIEVER was designed to illustrate and test a psychological theory of "how
descriptions of observed actions are utilized to attribute intentions, beliefs, and goals
to the actor."  Schmidt and his colleagues conducted experiments in which human
subjects were presented simple descriptions of sequences of actions by a single agent.
The sequences were interrupted at various points, and the subjects were asked to
summarize the events so far, describe what the agent was trying to do, or predict what
the agent would do next.  The researchers observed that:

1.  Summaries often included non-described, but expected, actions.

2.  Subjects did not provide summaries which referred to a disjunctive
set of plans, but they did provide "sketchy" summaries.

3.  Subjects often provided summaries of the form:  "The agent was
trying to do  (some act), but failed because  (some reason)."
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From these and similar observations, Schmidt concluded that people
understood and remembered event sequences by recovering the implicit structure of
causal relations between the events.  Schmidt argued that plan recognition is a single-
minded, hypothesis-driven process.  Based on the initial observations (descriptions),
the subjects seemed to devise a single hypothesized plan (for the actor).  This
hypothetical plan would be  incrementally revised and made more detailed as further
observations were made.

BELIEVER implemented this strategy of plan recognition.  Once the setting
of the story was input, BELIEVER would retrieve a single parameterized plan from
memory.  As each observation was input, BELIEVER tried to match the description
against an expected action  (that is, an action in the plan whose preconditions were
true).  Failure of the observation to match an expected action would trigger "critics",
that is, specialized pieces of code which revised the plan to account for errors and
accidents by the agent.

The work on BELIEVER is quite different from our own.   While BELIEVER
was a "top down" inference system, we have concentrated on the "bottom up" aspects
of plan recognition:  if many different ultimate plans are possible, how do we home in
on just a few possibilities?  BELIEVER was offered as a rough psychological model,
while we have concentrated on building a tight mathematical model of "ideal" perfor-
mance.  Schmidt's work began to deal with the critical issues of errors and accidents,
which we have not examined.  (Recent work by [Pollack 84] investigates problems in
recognizing erroneous plans.)   Both Schmidt and our work stress the use of a library
of plans, and the importance of "sketchy" or abstract plans; our work extends
BELIEVER's notion of abstraction, which involved plans with uninstantiated parame-
ters, but not a hierarchy of abstract plan types.

After the BELIEVER project interest grew in devising systems that could un-
derstand stories which involved a number of different characters, each pursing goals
and plans which could interact and conflict with the plans of the other characters.
[Bruce 81] presented a detailed analysis of the interacting plans in a number of chil-
dren's stories, including Hansel and Gretel.  Unfortunately Bruce did not continue
this line of research with a computational model.  The greatest nexus of interest in
story understanding grew up in Roger Schanks' group at Yale.

1.3.1.2. Script Based Systems
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Schank's theory of scripts  was designed to account for all kinds of regularities
in the world, both physical and social [Schank 75].  For example, the restaurant script
tells us that restaurants typically have tables and chairs, and that a person in a
restaurant typically has the goal of eating.

While scripts alone only provide a limited version of planning and plan
recognition, [Wilensky 82] extended script theory to handle more dynamic domains.
Wilensky argued that most everyday planning problems involve little or no search
("canned" plans are known for all possible goals) but do involve complicated interac-
tions between goals.  Furthermore, plan recognition is inextricably intertwined with
plan synthesis.  For example, given the following text:

John wanted the newspaper.  It was raining outside, so
John called for his dog Spot.

Wilensky claimed one would conclude that John wants Spot to fetch the newspaper
by reasoning as follows:  Having the newspaper is one of John's goals.  The standard
plan for this is to go outside and get the newspaper, and so this standard plan is
(tentatively) included in (the reader's beliefs about) John's wants.  The fact that it is
raining would invoke the stay dry  goal, so this is added to John's wants.  The reader
then simulates John's planning:  the goals conflict, so a resolve conflict  goal is also
created.  There are many different ways that resolve conflict  can be achieved, so the
recognizer stops planning.  Now the reader learns that John called for Spot.  The
effect of this is determined to be that Spot is with John.  The reader tries to connect
this new piece of input, as tightly as possible, with the current plan.  It notices that
one expansion of the replan  meta-plan for the resolve conflict  meta-goal is to alter
the get paper  plan so that some other agent goes outside and gets the paper.  Making
Spot the other agent connects this plan to the input.

While parts of this theory were implemented in many computer programs,
much remained vague.  A crucial feature were the so-called text comprehension
principles, which were used to "tie together" the individual sentences of the story.
These were coherence , meaning the character's plan is consistent; least commitment ,
meaning that a reader shouldn't prematurely assume that any particular explanation
found is the  explanation, and then have to undo it; and  parsimony , meaning that a
reader should "maximize the connections between the inputs".  Specific versions of
these general principles appear in our framework for plan recognition.   Our model
theoretic approach forces us to only consider consistent plans (inconsistent plans
would have no model).  Least commitment arises from concluding what holds in all
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minimum covering models, rather than a particular one.  The principle of parsimony
corresponds to our minimization of unrelated events.

1.3.1.3. Abduction

Recent work by [Charniak 85] views plan recognition, or "motivation analy-
sis", as a kind of abductive inference.  The term "abduction" comes from an early at-
tempt in the philosophy of science to look at explanation as the process of finding the
best hypothesis which logically entails the thing to be explained [Peirce 58].3  For ex-
ample, suppose we known that all men are mortal:

∀x . man(x) ⊃ mortal(x)

The thing to be explained is that Socrates is mortal.  An abductive inference would
take us from mortal(Socrates) to man(Socrates).  Thus Socrates is mortal because he's
a man.  Abduction is obviously a very unsound rule of inference, that can lead to
ridiculous conclusions.  Pierce never claimed abduction was all that was involved in
scientific explanation:  it was merely a method of generating hypotheses that could be
tested and weighed by other means.

Charniak's system employs abductive techniques to generate hypotheses
which entail the (logical forms of) the sentences in simple stories.  In order to limit
the amount of inference, only a small subset of the reader's knowledge is assumed to
be available at any one time.  For example, a story might be:

John went to the store.  He walked down the aisle and
picked up the milk.

The individual words in the story, such as "store" and "milk", activate the
semantically-related plan of going grocery shopping in the system's memory, as well
as related axioms about how shopping carts and check-out lines work.  The system
then tries to generate a resolution-style proof  that the story occurs, where it is
allowed to make two kinds of assumptions:

1.  An instance of any active concept may be assumed to exist.  Thus
the theorem prover may simply assume ∃x . Shopping-Trip(x),
if such an assumption is needed to close off a branch of the
proof tree.

                                                
3Eventually Peirce abandoned the notion of abduction [Hacking 83].



10

10

2.  Any two terms may be assumed to be equal, if the system cannot
prove (within some finite amount of time) that the terms are not
equal.  Thus the system may assume, for instance, that the go-
to-store step of the Shopping-Trip event is equal to the
particular instance of going to the store that is mentioned in the
story.

Charniak's framework is much less "cautious" than our own.  If several differ-
ent plans could entail the observations, it must choose a single one, whereas our
framework would simply conclude the disjunction.  It is also not entirely clear how
well the technique of controlling inference by drawing activation from lexical items
really works:  it would be possible to "tune" such an activation network so that it
activated just the formulas needed for any particular example.  No semantic basis for
the system is given, or indeed seems possible.  Despite these criticisms, Charniak's
work is among the most principled in the "scruffy" area of A.I.4

1.3.2.  Discourse

1.3.2.1. Allen and Perrault

[Cohen 78] first formalized Austin's and Searle's speech act theory in terms of
planning.  Utterances were viewed as actions which transformed the beliefs of the
speaker and hearer.  [Allen & Perrault 80] extended the analysis to include plan
recognition.  Plan recognition is necessary to account for the fact that a speaker need
not fully and literally execute a speech act in order to achieve its effect.  Instead, the
speaker need only perform an act which suggests to the hearer that the speaker's
overall intention is to achieve the desired effect.  Phenomena accounted for by plan
recognition include indirect speech acts, understanding of sentence fragments, and
certain kinds of context-dependent implicatures.

Allen analyzed plan recognition in terms of a set of plan recognition rules to-
gether with a heuristic control strategy.  The rules isolate those inferences which are
plausible, but not valid.  The control strategy determines which of these inferences
should actually be accepted.  An example of these rules is precondition/action  rule,
which states that if (agent) H believes (agent) S wants proposition P to hold, then H
may plausibly conclude that S wants action Act to be performed, given that P is a pre-

                                                
4 Workers in Artificial Intelligence are often divided into the neat and scruffy camps [Schank 83], with
the neats trying to create formal theories [Kautz 86c] which systematize the heuristics uncovered by
the intuition-driven scruffies.
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condition5 for Act.  Another is theeffect/action  rule, that states if S wants P to hold,
and P is achieved by Act, then S may want Act to occur.

precondition/action

H Bel S Wants P ⇒ H Bel S Wants Act
given that P is a precondition of Act

effect/action

S Wants P ⇒ S Wants Act
given that P is an effect of Act

Rules such as these were applied to form a chain of inference from a single observed
action (called the alternative ) to one of a number of possible contextually-dependent
goals (called the expectations ).  Allen's system tried to find the "most likely" (or
perhaps "most obvious") chain by performing a best-first search, numerically scoring
chains of inference6 by rules like the following:

(H1)  Decrease the rating of a chain of inference if it contains an action
whose preconditions are false at the time the action starts exe-
cuting.

(H3)  Increase the rating of a chain of inference if it contains descrip-
tions of objects and relations in its alternative that are unifiable
with objects and relations in its expectation.

One of the most interesting rating heuristics is applicable only in communicative do-
mains, where the observer can assume that the actor is trying to make the intentions
behinds his acts obvious.  It says to lower the rating of a chain of inference if a great
many different rules all apply to its last step. Thus ambiguity is penalized.

Allen did not try to provide any theoretical underpinning for his rules of
plausible inference, in terms of probability or model theory.  Nor did his system deal
with multiple observations, which is the main focus of attention in our work (as well
as that of [Litman 84], discussed in the next section).  The basic notion of forming a

                                                
5A precondition for an action is a proposition that must be true in order for the action to be
successfully executed.
6Allen called such chains of inference "partial plans".
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chain connecting an observation to a goal seems  related to our idea of a covering
model, in which every event is part of some End (goal) event.

1.3.2.2.  Extended Discourse

While a number of researchers [Sidner & Israel 81, Carberry 83, Grosz &
Sidner 87] have begun to extend Allen's work to deal with sequences of utterances,
[Litman 84] contains the most detailed and concrete proposals.

Litman's plan recognition system includes a set of domain-specific plan
schemas, a set of domain-independent meta-plan schemas, and an incremental
recognition  algorithm.  Meta-plans are plans which can take other plans as
arguments.  They include, for example, a plan to help a hearer identify a parameter
which appears in another plan (IDENTIFY-PARAMETER), and a plan to insert a
repair step into a plan which would otherwise fail (CORRECT-PLAN).  Litman's
work is notable in providing a deterministic, highly constrained recognition
algorithm, and in cleanly accounting for plan suspension and resumption.

The plan recognition algorithm constructs a stack of partially-recognized
plans.  When it observes an action, the system attempts to attach it somewhere on the
stack, according to the following preferences:

1. Attach (as a substep) to the plan on the top of the stack;

2. Attach to a new meta-plan, which refers to a plan somewhere in the
stack, and push that meta-plan onto the stack;

3. Attach to a new meta-plan, which refers to some other new plan.  If
that other plan is also a meta-plan, construct a plan for it to
refer to, and so on, until a domain-specific plan is reached.
Push everything onto the stack, with the domain-specific plan
on the bottom and the original meta-plan on top.

Attaching an observed act to a partial plan may require that certain equalities be
assumed to hold between parameters of the act and the plan.  Litman calls this
consistency unification.  A similar result is obtained in our framework by different
means.  As will be described in Chapter 4, the assumption that End events are equal
can lead to the conclusion that certain parameters of substeps of the event are equal.
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Both Litman's algorithm and our own (as will be seen in Chapter 7) rely on
constraint propagation to eliminate alternative interpretations.  Her system
exemplifies a backtrack-free, incremental recognition process, as described in Chapter
5.  Our "sticky" incremental recognition theory is a very crude approximation to
Litman's.

A significant difference between her work and ours is our treatment of
disjunction.  Our theory justifies inference through disjunctions, allowing disjunctions
to multiply7 in the final conclusion.  Litman argues that discourse should provide
enough linguistic clues such as intonation, gesture, and keywords to eliminate most
disjunctions.  Following [Sidner 85], Litman claims that if the interpretation remains
ambiguous, one should halt inference and simply wait for further utterances.

1.3.2.3.  Cohen and Levesque

Recent work reported in [Cohen & Levesque 80, Cohen & Levesque 87] tries
to derive speech act and discourse theory from general principles of rational
interaction.  The work axiomatizes (part of) the space of possible inferences available
to an agent engaged in planning and plan recognition.  They have not dealt with
selecting between alternative interpretations of an observation.

Cohen & Levesque developed a version of dynamic logic [Harel 79] enriched
with a logic of belief [Hintikka 62] to represent actions, beliefs, and intentions.
Axioms in this language formally encode rules similar to those of Allen.  For
example, (one version of) the shared-recognition precondition/action axiom is

                                                
7Although in practice disjunctions often collapse again by abstraction, as will be seen.
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(imply
(BMB y x

(and (or (CAUSE x p (CAN x q))
(CAUSE x p (CAN y q)))

(EXPECT y (GOAL x q))
¬(GOAL y ¬q)
(HELPFUL y x)))

(CAUSE x
(BMB y x (GOAL x (GOAL y p)))
(BMB y x (GOAL x

(GOAL y (FINITELY-WAIT-FOR x q))))
)

)

The  formula (BMB y x … ) means that y believes that it is mutually believed
between x and y that … The axiom states that if y and x mutually believe that p
enables q, and y expects that x will eventually want q, and y doesn't want not-q, and y
is helpful to x, then whatever x does to make it mutually believed that x wants y to
want p, will also make it mutually believed that x wants y to achieve q in the future
(that is, x won't have to wait forever for q to occur).

Cohen & Levesque have concentrated on getting all the details of the
representation of mental attitudes just right, and have deliberately ignored the issue of
controlling inference.  Our own work has gone to the other extreme, and completely
ignored the representation of belief.  Indeed, we have not distinguished between what
the agent wants to come about and what actually will come about; we've assumed all
plans are successful.  On the other hand, our system tells us what conclusions are
justified, rather than merely what conclusions are possible .  (It is not entirely clear, in
any case, what a "possible" conclusion is!)   A sophisticated plan recognition system
will eventually have to deal with the kinds of representational issues raised by Cohen
& Levesque.

1.3.3.  Intelligent Computer Environments

A natural application area for the discourse systems discussed above is the hu-
man/computer interface itself.  Plan recognition is a central component of several pro-
grams of research aimed at creating automated consultants, systems which would help
a person use a particular, complicated program,  or perhaps an entire operating
system.
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1.3.3.1. The MACSYMA Advisor

One of the earliest automated consultants [Genesereth 79] helped people use
MACSYMA, a  powerful program for manipulating symbolic equations.  Genesereth
created a model, MUSER, of how a user typically breaks down a task when using
MACSYMA.  This model related the task, or plan, structure to the structure of the
formulas being manipulated.   Plans were represented as procedural nets [Sacerdoti
77], together with input/output links between various steps.  The library contained
both common plans and common mistakes.

When a user had a problem with MACSYMA, he would invoke the advisor,
and tell it both his intended goal and what he had actually done.  The advisor then
built a possibly "buggy" plan graph which connected the two.  The advisor then
debugged the plan and told the user what to do.

The advisor used an ordered set of plan recognition rules, which are very simi-
lar to those used by Allen and Litman. The rules applied deterministically:  the partial
plan was expanded only in unambiguous cases.  An "escape hatch" existed in that the
advisor would ask the user for clarification in case of ambiguity.  Genesereth's work
raised many issues and techniques which were developed (or rediscovered) by later
researchers.  Like Litman's system, the consultant provided a "limited" inference
mechanism, and could not just chain off in arbitrary directions.  He did not, however,
formalize  the principles above (except in a particular implementation in LISP), or
deal with multiple expectations or concurrent multiple plans – issues central to our
own work.

1.3.3.2. A Smart Operating System: Plan Parsing

An operating system consultant under development at the University of
Massachusetts [Huff & Lesser 82] is notable for dealing with multiple concurrent
plans, and for relating plan recognition to parsing.

The system tracks user's actions, and allows users to specify high-level com-
mands  which are disambiguated by context.  A library of operating-system level
tasks, such as compile  or edit,   is encoded by a set of grammatical rewrite rules,
together with a list of constraints.   The rules employ an extended version of regular
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expressions.8 For example,  the plan to update source code is partly described by the
rewrite rule:

update_source_unit =>
((edit compile check_results) |
(edit compile) |
(compile check_results) |
(compile))+

Since a programmer may be working on several different projects during the same
session, the notion of a regular grammar is extended to that of a shuffle grammar.  If e
and f are expressions, their shuffle, written e$f, is the set of strings constructed by
mixing together a string of e with a string of f.  The interleave of an expression e,
written e@, is the expression shuffled with itself, an arbitrary number of times.  For
example, the fact that several unrelated programs may be worked on simultaneously
is represented by the grammar rule

programming_work =>
(do_programming |
do_documentation |
make_errors)@

The intelligent interface tries to parse the (partial) input of the user as it is received.  It
employs heuristics for ordering alternative partial interpretations of an observation
when parsing.  The heuristics try to "minimize" the amount of mixing performed by
the shuffle operator, and the number of shuffles invoked by the interleave operator.
For example, it prefers the shuffle eeeeffff over eeffeeff, which is preferred over
efefefef.  Likewise for interleave, s is preferred over s$s, which is preferred over
s$s$s.  The heuristics include:

1. Prefer (linking an observation to) an existing plan instantiation
over creating a new instantiation.

2. Prefer a new related instantiation to a new unrelated one.

                                                
8A regular expression is a string made up terminal and non-terminal symbols connected by the
operators | (or), * (repeat 0 or more times), + (repeat 1 or more times), and blank (concatenation),
possibly grouped by parentheses.  A rewrite rule specifies that a non-terminal symbol on its left-hand
side may be replaced by the expression on its right.
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3. If alternative interpretations both appear in the same higher-level
containing plan, prefer the interpretation which appears first in
that higher-level plan.

Huff & Lesser's parsing heuristics yield conclusions similar to those obtained
by the incremental recognition theories discussed in Chapter 5.  The plan recognition
algorithms described in Chapter 7 have a strong flavor of parsing, despite their origins
in logical inference.  Just as parsing can be viewed as logical inference9, specialized
inference can be cast as parsing.  But there are at least two crucial differences between
our work and Huff & Lesser's.  First, we treat all temporal orderings between the
components of an event as constraints.  Any temporal relation may be specified:  for
example, one step may be during another, times may overlap, or one step may be re-
quired to occur either before or after another (without specifying which alternative).
Second, our algorithms correspond to a particular model theory, while Huff &
Lesser's are admittedly ad hoc.  The inclusion of the shuffle operator, and the need to
reach conclusions before the end of a sequence of observations, prevents Huff &
Lesser from using any standard, well-understood parsing algorithms.

1.4. Related Work on Medical Diagnosis
One of the most active areas of applied research in A.I. has been in the area of

medical diagnosis.   Diagnosis and plan recognition are similar kinds of high-level
recognition problems.  (In fact, an early paper by [Pople 73], who was later to create
the INTERNIST diagnostic system, explicitly made the connection.)  In both cases
one needs to find the best explanation for some phenomenon, using a hierarchically
structured body of domain-specific knowledge.   The vocabulary of events can be
mapped to one appropriate for diagnosis in a straightforward way.  (See Chapter 2 for
the details of the Event vocabulary.)  Events are replaced by pathological states of a
patient.  An abstraction hierarchy over pathological states is known as a nosology.
The decomposition hierarchy corresponds to a causation hierarchy.  If pathological
state A always causes pathological state B, then B acts as a component of A.  If only
certain cases of A cause B, then one can introduce a specialization of A that has
component B.  The most basic specializations of End (unexplainable) events
correspond to specific disease entities, while states which can be directly observed are
symptoms.  (Note that a symptom may also cause other other states:  e.g., high blood
pressure can be directly measured, and it can cause a heart attack.)

                                                
9See any of the work on parsing with Prolog, such as [Pereira & Warren 80].
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The pattern of inference in plan recognition and diagnosis is similar as well.
Each symptom invokes a number of different diseases to consider, just as each ob-
served event in our framework c-entails the disjunction of its uses.  Once several find-
ings are obtained, the diagnostician attempts to find a small set of diseases which ac-
counts for, or covers, all the findings.  This step corresponds to the minimization of
End events in mc-entailment.  A general medical diagnosis system must deal with pa-
tients suffering from multiple diseases; our plan recognition framework was designed
to account for multiple concurrently executing plans.  Finally, our work departs from
previous work in plan recognition by explicitly dealing with disjunctive conclusions,
which are winnowed down by obtaining more observations.  These disjunctive sets
correspond to the differential diagnosis sets which play a central role in medical rea-
soning.

There are some significant differences between our framework and those used
in medical expert systems.  In plan recognition it is necessary to distinguish the differ-
ent roles that one event could play as a component of another, because a plan may
have several different steps of the same type.  One would need to distinguish the
instance of the "meet with committee" event which initiates the plan to "obtain PhD
degree" from the one which terminates it.  Medical systems simply have
undifferentiated "causes" links from diseases to symptoms.  They make the
assumption that a disease can't cause two different instances of the same symptom.  In
addition, the role of time is critical in plan recognition, but usually ignored in medical
systems.  But future medical systems may need to eliminate both differences.  It
certainly could be the case that a pathological state causes two different instances of
the same abstract symptom.  Thus AIDS often causes multiple different kinds of
cancer in the same patient.  [Patil, Szolovits, & Schwartz 82] suggests that diagnostic
systems should incorporate a model of the time course of a disease, and the difference
symptoms which are manifest at each stage.

Much of the research effort in medical expert systems has been on discovery
procedures.  The diagnostic system must take an active role, asking questions in order
to narrow down the set of possible diseases.   None of the work in plan recognition
has dealt with this issue, yet it is critical if we are to build systems which can actively
engage in a discourse or other task involving plan recognition.

1.4.1. INTERNIST and CADUCEUS
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One of the best-known diagnostic systems is INTERNIST, an ambitious pro-
gram which aimed to cover almost the entire field of internal medicine.  The first ver-
sion of INTERIST employed a causal hierarchy, and tried to chain from a group of
observed symptoms to one or more specific disease entities.  The succeeding versions
of the program, INTERNIST-II and ultimately CADUCEUS, employed multiple
abstraction (nosology) hierarchies as well.  A detailed description of the project
appears in [Pople 82].

A task for CADUCEUS was a data structure that explained a set of
observations by causally linking them to one or more pathological states.  The
pathological states did not have to be ultimate, specific disease entities; they could be
any states within the taxonomy.  The task could contain certain kinds of disjunctions.
For example, a task could link symptom A to causes B, C, and D, meaning that either
B caused A,  or C caused A, or D caused A.  Such a disjunction was called a
differential diagnosis set.  The differential diagnosis sets could collapse within the
task.  For example, all of B, C, and D could be linked by a subclassification arc to a
more general disease type E.

CADUCEUS created a task for each observed symptom, and then performed a
heuristic search to attempt to combine the tasks into a smaller set.  During the search,
CADUCEUS could interactively prompt for information that could would be used to
reduce differential diagnosis sets.  An example of a operator that CADUCEUS could
apply to two tasks in order to combine them is Combined Causal/Subclassification:10

Where P and Q are descriptors in tasks T1 and T2 respectively:
IF P is (directly) caused by S1 or S2 or … Sn AND

S1, S2, … Sn all (directly) sub-classify Q THEN
Link T1 and T2 by adding caused-by arcs from P
to each of S1, S2, … Sn, and sub-classification arcs
from each of S1, S2, … Sn to Q

In Chapter 7, our algorithm for plan recognition employs a data structure
called an "e-graph", which links a set of observed events to some End event.  E-
graphs are similar in structure to CADUCEUS's tasks.  But because our e-graphs
always contain an End node, two e-graphs can be combined by simply performing a
top-down match starting at the End nodes.  The resulting e-graph encodes all
possibly ways of combining the original graphs.  CADUCEUS performs only a
                                                
10The notation here is our own, not Pople's.
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heuristic search, and therefore could not guarantee completeness.  There is no
straightforward way to tell when all possible combinations have been found, or
whether the heuristics need to run longer.  The particular set of combining operators
are (Pople admits) rather arbitrary and incomplete.

An interesting feature incorporated in CADUCEUS that our framework lacks
are planning links, which connect one state to another if some specialization of the
latter can cause the former.  [Pople 82] shows how such links can be very useful for
heuristically guiding search.

1.4.2. A Set Covering Model

Recent work by [Reggia, Nau, & Wang 83] has proposed that medical diagno-
sis can be viewed as a set covering problem.  Each disease corresponds to the set of
its symptoms, and the diagnostic task is to find a minimum cover of a set of observed
symptoms.

While this idea has long been implicit in diagnostic systems such as
INTERNIST, Reggia & Nau's work is unique in providing a provably correct and
complete algorithm which not only finds all minimum covers, but also indicates when
and how the diagnostician should request additional findings.  The system is particu-
larly strong in dealing with multiple simultaneous diseases.

Reggia & Nau have not yet expanded the work to cover many-level causal or
abstraction hierarchies, although they mention that as a topic for future research.  The
lack of abstraction lets them stay within a purely propositional framework, which
greatly simplifies the algorithms.  Once causal and abstraction hierarchies are added,
their framework  and algorithms may prove to be very similar to our own.

1.5. Related Work on Non-Deductive Inference
Most recognition problems cannot be formalized entirely within a deductive

system – unless one uses it as a meta-language to talk about a different, non-
deductive system.11  This section reviews the major formal systems of non-deductive
inference used within A.I., concluding with circumscription, the system most closely
related to our own work.
                                                
11 For example, [Kyburg 74] uses first-order logic as a meta-language to axiomatize a system of
probabilistic inference.
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1.5.1.  Probability Theory

Probability theory provides the basis for non-deductive inference in practically
all the sciences outside of A.I..  Its success should at least cause the computer scientist
to hesitate a bit before devising a new sort of theory.  Indeed, a growing number of re-
searchers are basing systems for such tasks as vision or medical diagnosis on
classical, Bayesian, or Dempster-Shafer12 theories of probability.  In this section we
will describe (part of) plan recognition in terms of very elementary statistics.  Our
own work in plan recognition, and much of that cited above, can be viewed a method
of performing certain steps in the probabilistic inference.  A logical theory of plan
recognition also addresses issues about which classical probability theory has little to
say:  most importantly, how hypotheses should be constructed,  and when a likely
statement should be accepted  as fact.

Let A1, A2, etc. be various directly-observable and executable actions.  A
countably infinite number of plans, labeled P1, P2, etc. can be constructed from these
actions.  Each basic hypothesis Bi is of the form, "the agent intends to perform plan
Pi."  A composite hypothesis  H is a boolean combination of basic hypotheses.  For
now, we will only consider composite hypotheses which are conjunctions of basic
hypotheses.

What is the general form of a plan recognition problem?  One might try to
determine the most likely composite hypothesis.  There is only a trivial answer to this
problem:  the empty hypothesis, that makes no assertion about the world.  We cannot
state a plan recognition problem as a crisp decision problem.  The best one can do is
to try to determine the sets of plans (composite hypotheses) which are "most likely"
on the basis of the observed actions.  (Later on we'll mention some of the problems in
determining the exact point at which a hypothesis is likely enough to be accepted.)

Where P is the probability function, and A is the set of observed actions, the
goal is find those H for which P(H | A) is large.  By Bayes' theorem,

P(H | A) = 
P(A | H) P(H)

P(A)

Given a fixed set of observations A and certain simplifying assumptions, it is possible
to determine the relative  probabilities of various candidate hypotheses.  Assume that

                                                
12[Dempster & Shafer 76]
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every plan (every Bi) has the same prior probability, and exactly one possible
decomposition  (that is, a breakdown into actions).  Begin by considering the case
where the actor performs exactly one plan -- that is, the Bi are disjoint.  When
calculating relative probabilities, the factors P(A) and  P(H) can be ignored; the first
because A is fixed, the second because every candidate H must be a basic hypothesis.
The conditional probability of the observations given the hypothesis is simply:

P(A | H) = 1 if  H ≡ Bi ∧ (∀ Aj ∈ A)  . component-of(Aj, Pi)

= 0 otherwise

So the most likely hypotheses are simply those which incorporate all the observations.
But since plans are parameterized, there are an infinite number of candidate H's to
consider.  We need some way of searching this huge space.  Classical statistics seems
to have little help to offer; statistical theory has  concentrated on the special case
where the various H are of the same known form (e.g. the percentage of red balls in
the urn) parameterized only by some numerical coefficients.  But here we must deal
with a large number of fundamentally different plans which take different discrete
parameters.  (The minimal model construction described in this thesis corresponds to
this search.)

Relax the assumption that the Bi are disjoint.  Now it is harder to compute
relative values for P(H | A).  First, it is no longer reasonable to assign the same value
to all P(H) – particularly since some composite hypotheses may strictly entail other
composite hypotheses.  Second, the conditional probability of the observed actions
given the candidate hypothesis is much less constrained.  Without making additional
assumptions, all one may conclude is that

P(A | H) = 1 if (∀ Aj ∈ A) (∃ Bi ). H º− Bi ∧ component-of(Aj, Pi)

< 1 otherwise

If one is comfortable assuming that the Bi are independent, so that

P(B1 ∧ B2 ∧ …  ∧ Bn) = P(B1) P(B2) …  P(Bn)

then note the following:  if hypotheses H and H' contain the same number of
conjuncts, and if H accounts for all of A but H' does not, then P(H | A) > P(H' | A).
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Furthermore, if H and H' both account for A, the smaller hypothesis has the higher
probability.  Our framework for plan recognition has similar characteristics.

We have suggested that in plan recognition it is appropriate to invoke Occam's
razor:  to prefer explanations which only require the actor to have as few unrelated in-
tentions at a time as possible.  This condition does not quite fall out of the
probabilistic account so far, even assuming the independence of the basic hypotheses:
it may give a high probability to an H which does not quite account for all of A, but
would have to be greatly expanded to account for the remainder.  This can be partially
remedied by constraining the conditional probability function P(A | H) to be very
small for such an H.

P(A | H) << P(Bi)
if (∃ Aj ∈ A) (∀ Bi ). H º− Bi ⊃ ¬ component-of(Aj, Pi)

A further complication awaits in the wings:  it is not adequate to only consider
conjunctive composite hypotheses.  Much of this thesis will be concerned with
abstract event (plan) types.  An abstract plan stands for the class of its specializations;
that is, it is logically equivalent to the disjunction of all the different ways it which it
can be fully decomposed with constants assigned to all its parameters.  The likelihood
that the agent is performing an abstract plan is the probability assigned to the
corresponding composite hypothesis, which may be equivalent to an arbitrary
boolean combination of basic hypotheses.  This more general formulation compounds
the size of space of hypotheses.

In the end, then, probability gives a way to compare the relative merits of
alternative hypotheses about an actors intentions, but does not automatically yield a
way of generating  or selecting hypotheses to compare.  We don't seem to need any of
the high-powered mathematical techniques statisticians have developed.  And still the
problem of deciding what likely statements to accept as true remains.

In our  model-theoretic treatment of plan recognition, the statements that the
observer should accept are simply those which are valid in the minimal model
construction.  Using probabilities, one needs some sort of rule of acceptance, or at the
least be prepared to deal with all the complexities of allowing an agent to hold
degrees of belief.  [Kyburg 74] deals in detail with the complexities of both these
problems.  The present situation appears particularly difficult, because we have not
come up with absolute probabilities, but only a method for ordering the relative
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probabilities of certain statements.  Thus no simple rule -- such as “accept H if P(H) >
.95” will do.

1.5.2.  Default Logic

Much everyday reasoning employs "default rules", that allow conclusions to
be drawn if there is no evidence to the contrary.  For example, if all one knows about
Tweety is that he is a bird, then  one may conclude by default that Tweety can fly.
The additional information that Tweety is a penguin and that penguins don't fly would
disallow the previous conclusion.  [Reiter 80] developed an extension to first-order
logic, called default logic, to handle this kind of inference.

How useful are default rules for plan recognition?  It is straightforward to cast,
for example, Allen's plan recognition rules as  default inference rules.  Using Reiter's
logic, one could write, for example, the precondition/action  rule as:

Want(agt, P) ∧ precondition-of(P, act)  :  M  Want(agt, act)
Want(agt, act)

This says that if an agent wants a precondition  of an act to hold, and it is consistent
that (M) he wants the act, then conclude that he wants the act.  But little has been
gained from the use of default logic.  Default logic has the property that given a set of
facts and set of rules, one may reach different and perhaps mutually contradictory sets
of conclusions, depending on the order in which one applies the default rules.  The
logic insures that each set of conclusions, or extension, is internally consistent, but
gives no way choosing between them.  As a basis for plan recognition, then, default
logic suffers the same criticisms as the dynamic logic framework of Cohen &
Levesque:  too much of the problem remains hidden in the strategy which orders the
application of various rules of inference.

1.5.3. Circumscription

Circumscription is a specialized form of non-monotonic inference developed
by McCarthy to handle the "qualification problem" in planning.  McCarthy wanted to
be able to formally state that "the objects that can be shown to have a certain property
P by reasoning from certain facts A are all the objects that satisfy P." [McCarthy 80]
For example, one might have a description of a bunch of blocks on a table, and want
to synthesize a plan to build a certain kind of tower.  It might be necessary to pick up
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a block B, which can only be performed if B is clear.  If one cannot prove that there is
anything on top of B, then, in general, one wants to be able to conclude, by circum-
scribing the predicate on, that nothing is on top of B.

The circumscription of a predicate (or set of predicates) relative to a body of
knowledge is a sentence of second-order logic which involves the entire collection of
facts at hand.  The following formulation is drawn from [Lifschitz 84].  Let S[π] be a
sentence containing the list of predicates π.  The expression S[σ] is the sentence ob-
tained by rewriting S with each member of π replaced by the corresponding member
of σ.  The expression σ ≤  π abbreviates the formula stating that the extension of each
predicate in σ is a subset of the extension of the corresponding predicate in π; that is

(∀x . σ1(x) ⊃ π1(x)) ∧ … ∧ (∀x . σn(x) ⊃ πn(x)) 

where each x is a list of variables of the proper arity to serve as arguments to each σi.
The circumscription of π relative to S,  written Circum(S[π],π), is the second-order
formula

S[π] ∧ ∀ σ . (S[σ] ∧ σ ≤  π) ⊃  π ≤  σ

Chapter 4 shows how this formula is generalized to allow other symbols to vary
during the minimization, as described in [McCarthy 84].

Consider the following example.  Let S[p] = p(A) ∨ p(B), and compute the
circumscription of p relative to S.  This is:

(p(A) ∨ p(B)) ∧ ∀ σ . ((σ(Α) ∨ σ(B)) ∧ σ ≤  p) ⊃  p ≤  σ

Expanding the ² abbreviation gives

(p(A) ∨ p(B)) ∧ 
∀ σ . ((σ(Α) ∨ σ(B)) ∧ ∀x . σ(x) ⊃ p(x)) ⊃

∀x . p(x) ⊃ σ (x)

Now let us investigate what can be concluded from this statement.  Instantiate the
predicate variable σ with the lambda-expression λ(x) . x=A.  (That is, σ is the
predicate which is true of A and nothing else.)  This yields

(p(A) ∨ p(B)) ∧ 
((Α=Α) ∨ Α=B)) ∧ ∀x . x=A ⊃ p(x)) ⊃

∀x . p(x) ⊃ x=Α
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This statement reduces to

(p(A) ∨ p(B)) ∧ 
p(A) ⊃  (∀x . p(x) ⊃ x=Α)

Instantiate the circumscription formula a second time with the expression λ(x).x=B.
The result is

(p(A) ∨ p(B)) ∧ 
p(B)  ⊃  (∀x . p(x) ⊃ x=Β)

Thus the final conclusion is that one of A or B is a p, and there is only one p thing.
(The conclusion is not p(A) exclusive-or p(B) because of the possibility that A=B.)

(∀x . p(x) ⊃ x=Α) ∨ (∀x . p(x) ⊃ x=Β)

This example illustrates the major stumbling block to the use of
circumscription.  There is no general mechanical  way of determining how to
instantiate the predicate parameters in the second-order formula.   The work in this
thesis overcomes this problem for a particular class of circumscriptions, and gives
simple syntactic rules for computing a first-order version of the circumscription
formula.

A model of a set of statements is minimal  in π if there is no other model of
those statements which is identical, except that π holds of some things in the first
model but not in the second.13  Section 3.1 formally defines this notion.  [Etherington
86] includes proofs that the circumscription of a predicate relative to a formula is true
in all models minimal in the predicate.  The story of the completeness of
circumscription relative to this model theory is a bit complicated.  The notion of a
minimal model is powerful enough to capture the standard model of arithmetic, which
cannot be axiomatized [Davis 80].  While all strong second-order models of the
circumscription formula are minimal models, it is not necessarily the case that all
weak second-order models are minimal.  Another way of stating this is that the
circumscription formula is not  always complete if one views it as a schema for

                                                
13McCarthy's original version of circumscription did not make reference to a particular set of
predicates to be minimized.  Instead, the entire domain of the model was minimized; thus, a minimal
model of formula was one which had no submodels of the formula.  [Etherington 86] calls this version
of circumscription domain circumscription, and has shown that it is not comparable in expressive
power to predicate circumscription.  In this thesis, the expression "minimal model" always means
"minimal in some predicate".
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recursively generating a set of first-order statements.14 [Minker & Perlis 85] show
that circumscription is complete in this sense if in all models the circumscribed
predicate has a finite extension.   Chapter 3 presents a proof that formulas computed
by our closure function cl are complete for the minimal model semantics.

                                                
14McCarthy's early versions of circumscription viewed the formula in just this way, as a first-order
schema, rather than as a true second-order statement.
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Chapter 2
Representing Event Hierarchies

2.1. Language
The representation language is first-order predicate calculus with equality.  A

model provides an interpretation of the language, mapping terms to individuals, func-
tions to mappings from tuples of individuals to individuals, and predicates to sets of
tuples of individuals.  If M is a model, then this mapping can be made explicit by
applying M to a term, function, or predicate.  For example, for any model M:

Loves(Sister(Joe),Bill) is true in M if and only if
(M[Sister](M[Joe]), M[Bill]) ∈ M[Loves]

Meta-variables (not part of the language) which stand for domain individuals begin
with a colon.  Thus, one may write:

Let :C be an event token in Domain(M).

Models map free variables in sentences to individuals.  We write M{x/:C} to mean
the model which is just like M, except that variable x is mapped to individual :C.
Quantification is defined as follows:

∃x . p is true in M if and only if
there exists :C ∈ Domain(M) such that p is true in M{x/:C}

∀x . p is true in M if and only if
¬ ∃x . ¬p is true in M

The propositional connectives are semantically interpreted in the usual way.

Certain finite models can be completely specified by listing all the positive
atoms which hold in the model, other than trivial instances of equality (i.e., of the
form a=a).  For example, a model in which the only predicate with a non-empty
extension is Fat, which has two elements, may be specified by writing:

{ Fat(A), Fat(B) }
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FOL proofs in this thesis use natural deduction, freely appealing to obvious
lemmas and transformations.  It is convenient to distinguish a set of constant symbols
called individual parameters, or just parameters, for use in the deductive rule of exis-
tential elimination.  The rule allows one to replace an existentially-quantified variable
by a parameter which appears at no earlier point in the proof.  Parameters are
distinguished by the prefix *.  Technically, no parameters may appear in the final step
of the proof:  they must be replaced again by existentially-quantified variables (or
eliminated by other means).  This final step is omitted when it is obvious how it
should be done.  For example, we may write

The system concludes E1(*C) ∨ E2(*C).

instead of

The system concludes ∃x . E1(x) ∨ E2(x).

2.2. Representation of Time, Properties, and Events
Most formal work on representing action has relied on the situation calculus

or dynamic logic [Harel 79].  While these formalisms are convenient for planning,
they prove awkward for plan recognition:  it is impossible (without extreme
convolutions; see [Cohen 84]) to state that some particular action actually occurred at
a particular time.  We therefore adopt a "reified" representation of time and events.

Time is linear, and time intervals are individuals, each pair related by one of
Allen's interval logic relations: Before, Meets, Overlaps, etc. [Allen 83b].  The names
of several relations may be written in place of a predicate, in order to stand for the
disjunction of those relations, each applied to the same argument pair.  For example,
the expression

BeforeMeets(T1,T2)

is an abbreviation for the formula

Before(T1,T2) ∨ Meets(T1,T2)

As a special case, the predicates Within and Disjoint abbreviate common disjunc-
tions:
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Within(T1,T2) ≡ 
Starts(T1,T2) ∨ During(T1,T2) ∨ Finishes(T1,T2)

Disjoint(T1,T2) ≡ 
Before(T1,T2) ∨ Meets(T1,T2) ∨ MetBy(T1,T2) ∨ After(T1,T2)

Event tokens are also individuals, and event types are represented by unary
predicates.  All event tokens are real; there are no imaginary or "possible" event
tokens.  Various functions on event tokens, called roles, yield parameters of the event.
Role functions include the event's agent and time.  For example, the formula

ReadBook(C) ∧ agent(C)=Fred ∧ time(C)=T2

may be used to used to represent the fact that an instance of booking reading occurs;
the agent of the reading is Fred; and the time of the reading is (the interval) T2.

The reader may wonder why we have not used functions to construct event to-
kens from their parameters.  For instance, one might want to specify the above action
as:

ReadBook(Fred, T2)

Indeed, many researchers have taken the line that an event type, together with its pa-
rameters and time of occurrence completely specifies an event token [Pollack 86,
Allen 84].  There are two objections to this alternative.  First is that it is not always
possible to specify all the parameters of an event beforehand.  Should ReadBook also
have a parameter for the thing being read?  What about whether the agent is
skimming or reading carefully?  And so on.15  A second problem occurs when we
allow very abstract event types, like "ReadSomething", which holds of any reading
event, or "GainInformation", which holds of any instance of reading, watching
television, listening to the radio, etc.  It is possible for several distinct instances of the
same abstract event type to occur simultaneously.  Thus it is not sufficient to only
represent event types and times; explicit event tokens are needed as well.

Timeless propositions are called facts.  Facts are represented by ordinary
predicates.  For example, the fact that John is a human may be represented by the
formula

Human(John)

                                                
15This is the same problem people working on case grammar [Fillmore 68] ran into.
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The predicate Holds relates a time-dependent property and a time interval over which
the property holds.  Properties are individuals, and are therefore represented by terms.
For example, the fact that John is unhappy at time T1 may be represented by the for-
mula

Holds(unhappy(John),T1)

The term unhappy(John) denotes the proposition that John is unhappy.   Every
distinct property term represents a distinct property.  This is enforced by a set of
property identity axioms.  The axioms take the following form.

For all distinct ρ,σ  ∈ Property Terms:

∀ x1,… xn . ρ(x1,… xn) _ σ(x1,… xn)

∀ x1,… ,xn, y1, … yn . ρ(x1,… xn) = ρ(y1,… yn) ⊃ 
x1=y1 ∧ … ∧ xn=yn

All properties are dense:  if one holds over an interval, then it holds over all subinter-
vals of that interval.  The predicate Never holds of a property and a time when the
property holds over no subinterval of the time.  The following axioms capture these
constraints:

∀p,t1,t2 . Holds(p,t1) ∧ Within(t2,t1) ⊃ Holds(p,t2)

∀p,t1 . Never(p,t1) ≡ (∀t2 . Holds(p,t2) ⊃ Disjoint(t1,t2))

In addition to the relations between individuals, it is sometimes convenient to
talk about relations between predicates.  These meta-relations, such as "abstracts" and
"component", are not part of the logic itself.

2.3. The Event Hierarchy
An event hierarchy is a collection of restricted-form axioms, and may be

viewed as a logical encoding of a semantic network, as in [Hayes 85].  These axioms
represent the abstraction and decomposition relations between event types.  An event
hierarchy H contains the following parts, HE, HA, HEB, HD, and HG:
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•HE is the set of unary event type predicates.  HE contains the distinguished
predicates AnyEvent and End.

•HA is the set of abstraction axioms, each of the form:

∀x . E1(x) ⊃ E2(x)

for some E1, E2 ∈ HE.  In this case we say that E2 directly abstracts E1.  The transi-
tive closure of direct abstraction is abstraction; and the fact that E2 is the same as or
abstracts E1 is written E2 abstracts* E1.  AnyEvent abstracts* all event types.

•HEB is the set of basic event type predicates, those members of HE which do not
abstract any other event type.

•HD is the set of decomposition axioms, each of the form:

∀x . E0(x) ⊃ E1(f1(x)) ∧ E2(f2(x)) ∧ . . . ∧ En(fn(x)) ∧  κ   

where E0, …, En ∈ HE; f1, …, fn are role functions; and  κ is a subformula contain-
ing no member of HE.  The formula κ describes the constraints on E0.  E1 through En
are called direct components of E0.  Sometimes we refer to a component by the name
of its role function; e.g., E1 is the f1 direct-component of E0.  The type End never
appears as a direct component of another type; nor does any type which End abstracts.

•HG is the set of general axioms, those which do not contain any member of HE.
HG includes the axioms for the temporal interval relations; the density axioms for
Holds and Never; the property identity axioms; as well as any other facts not
specifically relating to events.

2.4. Components of Event Tokens
The component relation may be applied to event tokens in a model M as fol-

lows.  Suppose :Ci and :C0 are event tokens.  Then :Ci is a direct component of :C0
in M if and only if

(i) there are event types Ei and E0, such that :Ci ∈ M[Ei] and :C0 ∈ M[E0]

(ii) HD contains an axiom of the form:
∀x . E0(x) ⊃ E1(f1(x)) ∧ … ∧ Ei(fi(x)) ∧ . . . ∧ En(fn(x)) ∧  κ   
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(iii) :Ci=M[fi](:C0)

The component relation is the transitive closure of the direct component relation, and
the fact that :Cn is either the same as or a component of :C0 is written :Cn is a
component* of :C0.

Note that the component relation over event tokens does not correspond to the
transitive closure of the direct-component meta-relation over event types.  This is due
to the fact that a token may be of more than one type.

2.5. Acyclic Hierarchies & Compatible Types
An acyclic hierarchy is one that can be exhaustively searched in finite time,

and is formally defined as follows.  Two event predicates E1 and E2 are compatible if
there is an event type E3 such that both E1 and E2 abstract* E3.   A hierarchy if
acyclic if it contains no series of event predicates E1, E2, …, En such that:

(i)  Ei is a direct component of Ei+1 for odd i, 1 ≤ i ≤ n-1

(ii) Ej is compatible with Ej+1 for even j, 2 ≤ j ≤ n-2

(iii) En is compatible with E1

We will consider only acyclic hierarchies in this thesis, although most results should
extend to cyclic hierarchies as well.

Roughly speaking, a lexical hierarchy is cyclic if an event token may have an
event of the same type as a component.  The presence of the abstraction hierarchy,
however, makes this definition too generally applicable.  All events are of type
AnyEvent; therefore any event token will share at least the type AnyEvent with its
components.  The previous definition avoids this problem by consider only the meta-
structure between event type predicates.

2.6. Example:  The Cooking World
The actions involved in cooking form a interesting yet tractable domain for

planning and plan recognition.    The specialization relations between various kinds of
foods are mirrored by specialization relations between the actions which create those
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foods.  Decompositions are associated with the act of preparing a type of food, in the
manner in which a recipe spells out the steps in the food's preparation.  A good cook
stores information at various levels in his or her abstraction hierarchy.  For example,
one knows certain actions which are needed to create any cream-based sauce, as well
as certain conditions (constraints) which must hold during the preparation.  The sauce
must be stirred constantly, the heat must be moderate, and so on.  A specialization of
the type cream-sauce, such an Alfredo sauce, adds steps and constraints:  e.g., one
should slowly stir in grated cheese at a certain point in the recipe.

The cook and the observer have the same knowledge of cooking, a hierarchi-
cally-arranged cookbook.  (Most real cookbooks are "flat", of course; years of experi-
ence are required to induce the hierarchical structure.)  Actions of the cook are
reported to the observer, who tries to infer what the cook is making.  We do not
assume that the reports are exhaustive – there may be unobserved actions – although
such an assumption could be made, without changing our framework:  we would
simply add additional observational reports, of the form "nothing else happened" over
certain time periods.  A cook may prepare several different dishes at the same time, so
it is not always possible to assume that all observations are part of the same recipe.
Different End events may share steps.  For example, the cook may prepare a large
batch of tomato sauce, and then use the sauce in two different dishes.

We do not aim to capture a lot of domain-specific information about cooking:
rather, cooking appears to be one of the most general "toy worlds" one can consider.
(For interesting work on planning in the cooking world, see [Schmolze 86].)
Techniques which work in the cooking world should translate to almost any other do-
main.

2.6.1. Diagrammatic Form

The following diagram illustrates a very tiny cooking hierarchy.  Thick grey
arrows denote the abstraction meta-relation, while thin black arrows denote the direct
component meta-relation.  All event types are abstracted by AnyEvent.  As discussed
above, Ends are a special kind of event, which are not components of any other event.
Here there are two main categories of End events:  preparing meals and washing dish-
es.  It is important to understand that the abstraction hierarchy, encoded by the axioms
in HA, and the decomposition hierarchy, encoded by the axioms in HD, are
interrelated but separate.  Work on hierarchical planning often confuses these two
distinct notions in an action or event hierarchy.
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figure 2.1:  Cooking Hierarchy

2.6.2. The Abstraction Hierarchy

The diagram suggests some of the elements which make up the lexical hierarchy.

•The set of event types,  HE, includes PrepareMeal, MakeNoodles, MakeFettucini,
and so on.

•The abstraction axioms, HA, assert that every MakeSpaghetti and every
MakeFettucini is also a MakeNoodles, that every MakePastaDish is also a
PrepareMeal, and so on.  A traditional planning system might call MakeSpaghetti and
MakeFettucini different bodies of the MakeNoodles plan.
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∀x . MakeSpaghetti(x) ⊃ MakeNoodles(x)

∀x . MakeFettucini(x) ⊃ MakeNoodles(x)

∀x . MakePastaDish(x) ⊃ PrepareMeal(x)

•The basic event types, HEB, appear at the bottom of the abstraction (grey)
hierarchy.  These include the types WashDishes, Boil, MakeSpaghettiMarinara,
MakeChickenMarinara, MakeFettucini, MakeSpaghetti, and MakeMarinara.  Note
that basic event types may have components (but no specializations).

2.6.3. The Decomposition Hierarchy

•The decomposition axioms, HD, include much information which does not appear in
the diagram.  These axioms specify the role-functions which link an event to its
components, and the constraints which hold between those steps and the event.
Following is (an abbreviated version of) the decomposition axiom for the
MakePastaDish event.  This act includes at least three steps:  making noodles, making
sauce, and boiling the the noodles.  The equality constraints assert, among other
things, that the agent of each step is the same as the agent of the overall act; and that
the noodles the agent makes (specified by the result role function applied to the
MakeNoodles step) are the thing boiled (specified by the input role function applied
to the Boil step).  Temporal constraints explicitly state the temporal relations between
the steps and the MakePastaDish.  For example, the time of each step is during the
time of the MakePastaDish, and the Boil must follow the MakeNoodles.  The
constraints in the decomposition include the preconditions and effects of the events.
Preconditions for MakePastaDish include that the agent is in the kitchen during the
event, and that the agent is dexterous (making pasta by hand is no mean feat!).  An
effect of the event is that there exists something which is a PastaDish, the result of
the event, which is ready to eat during a time period postTime, which immediately
follows the time of the cooking event.
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∀x . MakePastaDish(x)  ⊃
MakeNoodles(step1(x)) ∧ 

Components MakeSauce(step2(x)) ∧ 
Boil(step3(x)) ∧ 

Equality agent(step1(x)) = agent(x) ∧ 
   Constraints result(step1(x)) = input(step3(x)) ∧ 
Temporal During(time(step1(x)), time(x)) ∧ 
   Constraints BeforeMeets(time(step1(x)), time(step3(x))) ∧ 

Overlaps( time(x), postTime(x)) ∧ 
Preconditions Holds(inKitchen(agent(x)), time(x)) ∧ 

Dexterous(agent(x)) ∧ 
Effects Holds(readyToEat(result(x)), postTime(x)) ∧ 

PastaDish(result(x))

Note that the names of the component roles, step1, step2, etc., are arbitrary; they do
not indicate temporal ordering.  The event types which specialize MakePastaDish add
additional constraints and steps to its decomposition.  For example, the event type
MakeSpaghettiMarinara further constrains its decomposition to include
MakeSpaghetti (rather than the more generic MakeNoodles) and MakeMarinaraSauce
(rather than simply MakeSauce).  One could also add completely new steps as well.

∀x . MakeSpaghettiMarinara(x)  ⊃
MakeSpaghetti(step1(x)) ∧ 
MakeMarinaraSauce(step2(x)) ∧ … 

2.6.4. Describing Instances of Events

Assertions about particular event instances take the form of the predication of
an event type of a constant, conjoined with equality assertions about the roles of the
event token, and perhaps a proposition relating the time of the event to that of other
events.  The English statement, "Joe made the noodles on the table yesterday" may be
represented as follows:

MakeNoodle(Make33) ∧ 
agent(Make33) = Joe ∧ 
result(Make33) = Noodles72 ∧ 
Holds(onTable(Noodles72), Tnow) ∧ 
During( time(Make33), Tyesterday )

2.7. Conditional Actions
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Plans of action often contain conditional actions.  If some condition holds,
then the plan (or event type) contains a certain step; otherwise, it contains a different
step.   At first glance, the form of a lexical hierarchy does not seem to allow for the
presence of conditional steps in the decomposition of an event type.  Consider the
case where if a condition P holds, event type E0 should contain a step of type ET;
otherwise, it contains one of type EF.  One may want to write something like the
following.

∀x . E0(x) ⊃ (P ⊃ (ET(sT(x)) ∧ κT)) ∧ 
(¬P ⊃ (EF(sF(x)) ∧ κF)) ∧ 
E2(s2(x)) ∧ … ∧ κ

The expressions κT and κF introduce constraints which only hold on the conditional
part of the event.  This formula is clearly not of the form specified for axioms in HD.
Does this mean that all the work in this thesis that depends on lexical hierarchies must
be redone in order to account for conditional events?

2.7.1. Representing Conditional Actions

Fortunately, the answer is no.  The form of a lexical hierarchy is sufficiently
general to accommodate conditional events, through the introduction of additional ab-
stract event types.  Consider the case above.  There are two clear ways of specializing
the event type E0.  In the first category, P holds, and E0 contains the component ET.
In the second category, P does not hold, and E0 contains the component EF.  This
situation is captured by the following axioms.

∀x . E0(x) ⊃ E2(s2(x)) ∧ … ∧ κ

∀x . E0T(x) ⊃ E0(x)

∀x . E0F(x) ⊃ E0(x)

∀x . E0T(x) ⊃ ET(sT(x)) ∧ κT ∧ P

∀x . E0F(x) ⊃ EF(sF(x)) ∧ κF ∧ ¬ P

It is plain that these axioms are of the proper form to appear in HA and HD.  The pro-
cess that transformed the first statement into the second set of statements could be re-
peated, in case E0 contains more than one conditional expression.  In fact, this forms
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a proof that conditional statements can always be "factored out" of decomposition ax-
ioms.

 This is not the only possible way of representing conditionals in a lexical
hierarchy.  Another method would be to replace the conditional expression in the
decomposition of E0 by a new event type, and then give two specializations for that
event type.   The result could be as follows.

∀x . E0(x) ⊃ EP(s1(x)) ∧ κP ∧ 
E2(s2(x)) ∧ … ∧ κ

∀x . EPT(x) ⊃ EP(x)

∀x . EPF(x) ⊃ EP(x)

∀x . EPT(x) ⊃ ET(sT(x)) ∧ κT ∧ P

∀x . EPF(x) ⊃ EF(sF(x)) ∧ κF ∧ ¬ P

The new constraint expression κP in the first axiom makes s1(x) have all the same
roles as x, except for the new role s1 itself.  This is necessary so the constraint
expressions κT and κF in the final two axioms properly constrain sT(x) and sF(x).
The advantage of this method is that it results in fewer axioms if the initial
decomposition axiom contains many conditional expressions.  Where n is the number
of conditionals, the former method could introduce as many as O(2n) axioms, while
the latter method only introduces O(n) axioms.

Some question might arise in the case where half the conditional is empty.
Suppose that a certain action had to be performed only if P held:

∀x . E0(x) ⊃ (P ⊃ (ET(sT(x)) ∧ κT)) ∧ 
E2(s2(x)) ∧ … ∧ κ

Either transformation goes through as before, with the elimination of the atom
EF(sF(x)).  One of the axioms generated by the second method, however, looks a bit
odd.  The decomposition axiom for the event  EPF contains no event-types in its con-
sequence:

∀x . EPF(x) ⊃ ¬P
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What is intuitive meaning of the event type EPF?  It is a kind of "null event".  One
will never directly observe an instance of EPF; however, from ∃x.E0(x) and ¬P one
can deduce that EPF occurred.  Unlike some accounts of null actions, we do not insist
that a null action occurs over all time periods in which the world is unchanged.

2.7.2. An Example

The PickUp action in the cooking world depends critically upon the
temperature of the object being picked up.  If the object is hot, the agent must wear a
mit to avoid being burned.  Therefore the plan for picking up an object must begin
with the action of conditionally putting on a mit if the object is hot.  This can be
encoded in an event hierarchy as follows.

∀x . PickUp(x) ⊃
Grasp(s2(x)) ∧ object(x)=object(s2(x)) ∧ … 

∀x . PickUpHot(x) ⊃  PickUp(x)

∀x . PickUpCool(x) ⊃  PickUp(x)

∀x . PickUpHot(x) ⊃
Holds(Hot(object(x)), time(x)) ∧ 
PutOnMit(s1(x)) ∧ BeforeMeet(time(s1(x)),time(s2(x))) ∧ … 

∀x . PickUpCool(x) ⊃
 Never(Hot(object(x)), time(x))

Every PickUp includes grasping the object, lifting it, and so on.  PickUps are either of
hot or cool objects.  Picking up a hot object requires a preliminary step of putting on a
mit.  Picking up a cool object is constrained to occur only when the object is never
hot during the time of the PickUp.
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Chapter 3
Covering Models

We have seen that there are too many models of an event hierarchy to
construct a semantic basis for recognition.  A technique known as model minimization
can be used to select a suitable subset, called covering models.  In a covering model,
any non-End event is a component of some End event.  Each covering model for an
observation serves as an explanation, in terms of End events, of the observation.
While it would be unwise to arbitrarily adopt a particular  covering model, it is
reasonable to conclude whatever propositions hold in all covering models.  These
propositions are c-entailed by the observation.  The sequence of model minimizations
used to construct the covering models corresponds to a complex application of
McCarthy's predicate circumscription schema.  An easily-computed set of
completeness assumptions provides a complete proof-theoretic description of the
covering models.

Recall that a lexical hierarchy H contains two major parts:  an abstraction
hierarchy, HA, and a decomposition hierarchy, HD.  Each of these hierarchies must
be strengthened in order to be used for recognition.   The abstraction hierarchy is
strengthened by assuming that there are no event types outside of HE, and that all  ab-
straction relations between event predicates are derivable from HA.  The
decomposition hierarchy is strengthened by assuming that non-End events occur only
as components of other events.

These assumptions are reasonable because H encodes all of our knowledge of
events.  If the hierarchy is enlarged, the assumptions must be revised.  (This thesis
does not deal with learning, but may be compatible with various learning strategies.
An obvious approach is to try to explain the observations while assuming H is
complete; if there are no covering models of small cardinality in End, then relax some
of the completeness assumptions.)  At the conceptual level one can imagine
computing all the completeness assumptions each time the hierarchy is modified.  An
implementation, of course, could incrementally build structures representing the
assumptions as each part of the hierarchy is created.

3.1 Model Minimization
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Let  M1 be a member of a class of models  µ , and let π be a set of predicates.  M1 is
minimal in π among µ if and only if there does not exist any other model M2 such
that:

1.  M2 is a member of µ.

2.  M1 and M2 have the same domain.

3.  M1 and M2 agree on the interpretation of all constants, functions,
and predicates not in π.

3.  The extension of every member of π in M2 is a subset of the exten-
sion of that predicate in M1.

5.  The extension of some member of π in M2 is a proper subset of the
extension of that predicate in M1.

If M1 fails to be minimal because of such an M2, we say that M2 defeats the candi-
dacy of M1.

3.2 Completing the Abstraction Hierarchy
The following conditions incrementally define the A-closed models of H.  In each
case, M is a model of HA.

• M is closed under specialization if M is minimal in HE–HEB
among models of HA.  That is, all non-basic event types are
minimized.

• M is closed under abstraction if M is minimal in HE–{AnyEvent}
among models of HA which are closed under specialization.

• Finally, we define M to be an A-closed model of H just in case M is
a model of H, and M is also a model of HA which is closed un-
der abstraction.
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The following theorems describe the A-closed models in proof-theoretic
terms.  Proofs appear in the Appendix.  Theorem 3.1 says that the given
specializations of each type are assumed to be exhaustive.  Theorem 3.5 shows that
we have assumed that all event types are disjoint, unless H explicitly states otherwise.
(Disjointedness assumptions are used heavily in recognition, as demonstrated below.
We do not assert that different event types cannot occur simultaneously; only that a
particular token cannot be of two non-compatible types.)  Theorem 3.7 says that every
event is of exactly one basic type.  Theorem 3.9 presents a complete axiomatization of
the A-closed models.

3.2.1. Theorem 3.1 (Exhaustiveness)

Suppose {E1, E2, … , En} are all the predicates directly abstracted by E0 in HA.
Then the statement:

∀x . E0(x) ⊃ (E1(x) ∨ E2(x) ∨ … ∨ En(x))

is true in all models of HA which are closed under specialization.  The statement is
also true in all A-closed models of H.

3.2.2. Theorem 3.5 (Disjointedness)

If event predicates E1 and E2 are not compatible, then the statement:

∀x . ¬E1(x) ∨ ¬E2(x)

is true in all models of HA which are closed under abstraction.  The statement is also
true in all A-closed models of H.

3.2.3. Theorem 3.7  (Unique Basic Types)

If M1 is a model of HA closed under abstraction containing event token :C1, then
there is a unique basic event type Eb such that :C ∈ M1[Eb]. Any event type which
holds of :C abstracts* Eb.

3.2.4. Theorem 3.9  (Abstraction Completeness)
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Let EXA be the set of all statements which instantiate Theorem 3.1, and let DJA be
the set of all statements which instantiate Theorem 3.5 for a particular H.  M1 is an A-
closed model of H if and only if M1 is a model of H ∪ EXA ∪ DJA.

3.3 Completing the Decomposition Hierarchy
Once the abstraction hierarchy has been closed, it is a simple matter to close

the decomposition hierarchy, by minimizing the set of non-End event types.  C-
entailment is then defined in terms of the covering models.  Theorem 3.10 says that
every non-End event must be a component of some other event, and Theorem 3.11
allows one to infer the disjunction of possible uses of observed event token.  By
Theorem 3.13 every event is part of an End event, and by 3.14 the upward-inference
assumptions exactly axiomatize the covering models.  Theorem 3.15 states the
obvious corollary that c-entailment is computable.  Theorem 3.16 shows that one
must consider all the possible abstractions and specializations of an event in order to
account for all of its possible uses -- and therefore predicate completion in the style of
[Clark 78] does not correspond to decomposition completion.

3.3.1. Definition of Covering Model and C-Entailment

M is a covering model of H if M is minimal in HE–{End} among A-closed models
of H.  Then Γ c-entails Ω, written

Γ Hº=c Ω

when Ω holds in all covering models of H in which Γ holds.  If Ω holds for any Γ, Ω
is c-valid.

3.3.2. Theorem 3.10  (No Useless Events)

Let M1 be a covering model of H, containing event token :C1.  Then either
:C1 ∈ M1[End] is true, or there exists some event token :C2 such that :C1 is a direct
component of :C2.

3.3.3. Theorem 3.11 (Component/Use)

Let E ∈ HE, and Com(E) be the set of event predicates with which E is compatible.
Consider all the decomposition axioms in which any element of Com(E) appears on
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the right-hand side.  The j-th such decomposition axiom has the following form,
where Eji is the element of Com(E):

∀x . Ej0(x) ⊃ Ej1(fj1(x)) ∧ … ∧ Eji(fji(x)) ∧ … ∧ Ejn(fjn(x)) ∧  κ

Suppose that the series of these axioms, where an axiom is repeated as many times as
there are members of Com(E) in its right-hand side, is of length m > 0. Then the fol-
lowing statement is c–valid:

∀x . E(x) ⊃ End(x) ∨ 
(∃y . E1,0(y) ∧ f1i(y)=x) ∨ 

 (∃y . E2,0(y) ∧ f2i(y)=x) ∨ 
 …  ∨ 
 (∃y . Em,0(y) ∧ fmi(y)=x) 

3.3.4. Theorem 3.13  (No Infinite Chains)

If M1 is a covering model of H such that C1 ∈ M1[E], then there is a :Cn such that
:Cn ∈ M1[End] and :C1 is a component* of :Cn.

3.3.5. Theorem 3.14  (Decomposition Completeness)

Let CUA be the set of all formulas which instantiate Theorem 3.11 for a particular H.
M1 is a covering model of H if and only if M1 is a model of
H ∪ EXA ∪ DJA ∪ CUA.

3.3.6. Theorem 3.15  (Computability of C-Entailment)

There is a computable function cl which maps a hierarchy H into a set of axioms with
the property that

Γ Hº=c  Ω

if and only if

cl(H) ∪ Γ º= Ω

3.3.7. Theorem 3.16  (Not Predicate Completion)



45

45

Theorem 3.11 cannot be strengthened by considering only axioms in which E appears
as a component, instead of all ones in which event types compatible with E appear as
components.

3.4 Circumscription
Predicate circumscription [McCarthy 84] provides a proof theoretic realization

of the model-theoretic minimalization operation used above.  Direct use of the
circumscription schema is difficult, however.  Its most general form is a second-order,
rather than a first-order statement.  Techniques are known for automatically
computing first-order circumscriptions for certain kinds of axiom sets; for example,
for horn-clauses [Bossu & Seigel 85], or "separable" databases [Lifschitz 84].  None
of these previously known techniques apply in the case under consideration here.
Although the original hierarchy may be in horn-clauses, the result of the first
minimization is a non-horn set of sentences, so the techniques based on predicate-
completion are not applicable.  None of the minimizations involve separable sets of
predicates.  However, the restricted form of lexical hierarchies has allowed us to
directly compute a set of first-order statements which characterize all models
resulting from a certain sequence of minimizations.  This work thus describes a
special but useful case in which circumscription can be efficiently computed.

Recall that the circumscription of the set of predicates π over a formula S,
written Circum(S[π],π), stands for the second-order formula

S[π] ∧ ∀ σ . (S[σ] ∧ σ ≤  π) ⊃  π ≤  σ

where the expression σ ≤  π abbreviates the formula stating that the extension of each
predicate in σ is a subset of the extension of the corresponding predicate in π; that is:

(∀x . σ1(x) ⊃ π1(x)) ∧ … ∧ (∀x . σn(x) ⊃ πn(x)) 

3.4.1. Theorem 3.17  (C-entailment and Circumscription)

For a given a hierarchy H, a statement Ω is c-entailed by Γ if and only if Ω follows
from the following schema:
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Γ ∧ Circum( H ∧ Circum( Circum( HA ,  HE–HEB ),
{AnyEvent}),

HE–{End})

Note that the two inner circumscriptions apply only to the abstraction hierarchy, while
the final circumscription applies to all of H.

3.5 Example:  The Cooking World, Continued
We return to the domain of the cooking, and discuss some of the statements

which appear in the closure of the lexical hierarchy.  These statements are then used
to solve a simple plan recognition problem.  The closure function, cl, generates three
sets of axioms:  the exhaustiveness assumptions (EXA), disjointedness assumptions
(DJA), and component/use assumptions (CUA).   We consider each set in turn.

3.5.1. Exhaustiveness Assumptions (EXA)

These axioms arise by minimizing non-basic event types.  They justify infer-
ences from an abstract type to the disjunctive of its specializations.  In the cooking
world, EXA includes the assertion that all End events are either instances of preparing
meals or washing dishes:

∀x . End(x) ⊃
PrepareMeal(x) ∨ 
CleanHouse(x) 

Similarly, all instances of preparing meals are either instances of making a pasta dish
or making a meat dish.

∀x . PrepareMeal(x) ⊃
MakePastaDish(x) ∨ 
MakeMeatDish(x)

One such axiom appears for every event type not in HEB.

3.5.2. Disjointedness Assumptions (DJA)

These axioms arise by minimizing all event types other than AnyEvent.  This
minimizes the set of types of each event token.  By EXA, every event is of some basic
type; by DJA, it is of no more than one basic type.  The final effect of this is that
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types are disjoint, unless one abstracts the other, or they abstract a common type.  It is
important to reiterate that the assumptions do not assert that different event types
cannot occur simultaneously; only that a particular token cannot be of two non-
compatible types.  The cooking world example includes the assumptions that
preparing a meal and cleaning a house are disjoint; making a pasta dish and making a
meat dish are disjoint; and so on.

∀x . ¬PrepareMeal(x) ∨ ¬CleanHouse(x)

∀x . ¬MakePastaDish(x) ∨ ¬MakeMeatDish(x)

It is simply to "block" a potential disjointedness assumption by adding a new
type.  For example, suppose we do not want to make the assumption that pasta dishes
and meat dishes are disjoint.  Then add a type to the original hierarchy which is ab-
stracted by both; for example, MakeMeatRavioli.

adding to HA

∀x . MakeMeatRavioli(x) ⊃ MakePastaDish(x)

∀x . MakeMeatRavioli(x) ⊃ MakeMeatDish(x)

would eliminate from DJA

∀x . ¬MakePastaDish(x) ∨ ¬MakeMeatDish(x)

3.5.3. Component/Use Assumptions (CUA)

The most important assumptions for recognition arise from minimizing non-
End events.  The assumptions in CUA let one infer the disjunction of the possible
causes for an event from its occurrence.    The axioms take us from an event to an
event which has a compatible type as a component.  The simplest case is when only a
single type could have a particular event as a direct component.  For instance, the
hierarchy has only a single use for the action Boil, namely MakePastaDish.

∀ x . Boil(x) ⊃
∃ y . MakePastaDish(y) ∧ x = step3(y)
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It is frequently possible to simplify the statements in CUA, by taking
advantage of the abstraction axioms.  For example, according the rule for construction
of CUA, the upward-inference axiom for MakeNoodle is:

∀ x . MakeNoodle(x) ⊃
(∃ y . MakePastaDish(y) ∧ x = step1(y)) ∨ 
(∃ y . MakeSpaghettiMarina(y) ∧ x = step1(y)) ∨ 
(∃ y . MakeSpaghettiPesto(y) ∧ x = step1(y)) ∨ 
(∃ y . MakeFettuciniAlfredo(y) ∧ x = step1(y)) 

The following axiom is equivalent, in light of HA.

∀ x . MakeNoodle(x) ⊃ 
∃ y . MakePastaDish(y) ∧ M1 = step1(y) 

The simplification could not be made if MakePastaDish did not abstract all of the
other event types, MakeSpaghettiMarina, MakeSpaghettiPesto, and
MakeFettuciniAlfredo.

Another axiom that will be useful in our examples lets one infer the two
known uses for making marinara sauce, namely making spaghetti marinara and
making chicken marinara.

∀ x . MakeMarinara(x) ⊃
(∃ y . MakeSpaghettiMarinara(y) ∧ x = step1(y)) ∨
(∃ y . MakeChickenMarinara(y) ∧ x = step3(y)) 

This statement has also been simplified.  The original form should include the
disjunct MakePastaDish, since MakePastaDish has the direct component MakeSauce,
which is compatible with MakeMarinara.  However, the exhaustiveness assumptions
can be used to conclude that any MakePastaDish is either MakeSpaghettiMarinara,
MakeSpaghettiPesto, or MakeFettuciniAlfredo.  The step1 role in the latter two cases
must be filled by an event of type MakePesto or MakeAlfredo respectively.  The dis-
jointedness assumptions can then be used to infer that MakeMarinaraSauce,
MakePesto, and MakeAlfredo are mutually disjoint.  Therefore the possibility that
MakeMarinaraSauce could be a component of MakeSpaghettiPesto or
MakeFettuciniAlfredo can be eliminated.  We will use without further comment
simplified versions of the assumptions in CUA.

Finally, the UPA axiom for MakeSauce demonstrates the importance of
considering compatible types.  The only direct use of MakeSauce is MakePastaDish;
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however, MakeSauce abstracts MakeMarinara, and that event type appears in the
decomposition of MakeChickenMarinara.  Therefore the axiom is:

∀ x . MakeSauce(x) ⊃
(∃ y . MakePastaDish(y) ∧ x = step1(y)) ∨ 
(∃ y . MakeChickenMarinara(y) ∧ x = step5(y)) 

3.5.4. A Simple Recognition Problem

The assumptions justified by c-entailment can be used to solve simple
recognition problems.  Let us suppose that the observer learns that the cook is either
making spaghetti or fettucini.  This is not enough information to conclude a particular
basic dish is being created.  It is safe to conclude, however, that some  pasta dish is in
the works.  From this abstract description of the End event in progress, the observer
can still make useful predictions.  For example, he knows that the agent will
eventually begin to boil water.  A helpful observer might fetch a pot of water; a
enemy observer might shut off the water supply!

Following is a proof sketch.  The justification for each step appears in italics.

Observation
MakeFettucini(M1) ∨ MakeSpaghetti(M1)

Abstraction
MakeNoodle(M1)

Component/use, Existential Instantiation
MakePastaDish(*I1)

Abstraction
End(*I1)

Decomposition
Boil( step3(*I1) ) ∧ After(time(M1), time(step3(*I1)) )
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The final step is the predication, that a boiling event will occur at some time after the
observation.  As discussed in Chapter 2, the final logical form should replace the indi-
vidual parameter *I1 by an existentially-quantified variable, and write

∃y . Boil( step3(y) ) ∧ After(time(M1), time(step3(y)) )
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Chapter 4
Minimum Covering Models

C-entailment does not combine information from several observations.  We
would like to intersect possible explanations for each event.  This is done by selecting
covering models which minimize the number  of end events.  Minimization  can be
understood either as producing a set with as few elements as possible, or as producing
a set with no redundant elements.  The former sense is called cardinality
minimization, and the latter, set minimization.  (The use of the word minimization
without qualification will always mean set minimization.)  The model minimization
schemes used in Chapter 3 are all instances of set minimization.  The work in this
chapter relies on cardinality minimization.  We will show that certain cases of
circumscription with variables correspond to numeric minimization.

4.1. Cardinality Minimization
Let  M1 be a member of a class of models  µ , and let π be a predicate.  M1 has mini-
mum cardinality in π among µ if and only if there does not exist any other model
M2 such that:

1.  M2 is a member of µ.

2.  The size of the extension of π in M2 is smaller than the size of the
extension of π in M1.  That is,

| M2[π] | < | M1[π] |

If M1 fails to be minimal because of such an M2, we say that M2 defeats the candi-
dacy of M1.

Let Γ be any sentence or set of sentences, and H a hierarchy.  M is a minimum cover
of Γ (relative to H) just in case

1.  M is a model of Γ

2.  M is a covering model of H
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3.  M has minimum cardinality in End among covering models of H

Suppose Γ is any sentence.  Then P is mc-entailed by Γ, written
Γ Hº=mc Ω

if Ω holds in all minimum covers of Γ.

The proof-theoretic counterpart of cardinality minimization is to adopt the
strongest statement which limits the number of distinct end events.  Unfortunately,
this step is not always effectively computable (the usual problem with default
reasoning). In practice, one makes the strongest assumption possible; forward chains
a limited amount; if a contradiction is detected, then makes the next weaker
assumption, and repeats.

4.1.1. Theorem 4.1  (Minimum Cardinality Defaults)

Consider the following sequences of statements.

MA0. ∀x . ¬End(x)

MA1. ∀x,y . End(x) ∧ End(y) ⊃ x=y

MA2. ∀x,y,z . End(x) ∧ End(y) ∧ End(z)
⊃ (x=y) ∨ (x=z) ∨ (y=z)

… 

The first asserts that no End events exist; the second, no more than one End event ex-
ists; the third, no more than two; and so on.  Suppose there is a minimum covering
model in which the extension of End is finite.  Then

Γ Hº=mc Ω

if and only if

Γ ∪ cl(H) ∪ MAi º− Ω

where i is the smallest integer such that left-hand side of the provability relation is
consistent.
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4.2. Cardinality Circumscription
At first glance it would seem that the theory of circumscription cannot handle

the problem of minimizing the cardinality of the extension of a predicate.  The
circumscription schema states that there is no predicate which satisfies the axioms for
the minimized predicate which has an extension which is a proper subset of that of the
predicate.   The extension must be minimal, not a minimum.

But consider the role of the non-minimized symbols in the circumscription.  In
the simplest version of circumscription, used in the previous chapter, these symbols
must have the same denotation in comparable models.  But the more general theory of
circumscription [McCarthy 85] allows one to specify that certain predicates,
functions, and/or constants vary during the minimization.  Models may be comparable
even if they do not agree on those symbols.  The definition of minimum cardinality
above compares models without regard to their agreement on any symbols.  One
could try to represent this process by circumscribing a predicate where all other
symbols are allowed to vary.  Surprisingly, this works!  Under easily met conditions,
minimizing cardinality is equivalent to setwise minimization where all predicates and
functions vary.

Why should this be the case?  Suppose we have two models, M1 and M2,
where the cardinality of the extension of End is larger in M1 than it is in M2, yet the
extension of End in M1 does not contain the extension of End in M2.  M1 and M2 are
not comparable.  But there must be a model that "looks like" M2, which is
comparable to M1.  This model simply swaps the roles played by certain domain
elements in all predicates and functions, so that its extension of End is a proper subset
of M1's.  We can precisely define how this can be done.

4.2.1. Circumscription with Variables

The circumscription schema can be modified to allow symbols to vary.  The circum-
scription of π π over a formula S where α varies is written as

Circum(S[π,α],π, α )

which abbreviates the second-order formula

S[π,α] ∧ ∀ σ,β . (S[σ,β] ∧ σ ≤  π) ⊃  π ≤  σ
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In the schema, α stands for either a single symbol or a sequence of symbols.

4.2.2. Theorem 4.2  (Cardinality Circumscription)

Let α include all the predicate, function, and constant symbols in our language other
than End.  Suppose that all models of H are infinite, and in some model of Γ ∪ cl(H),
End has a finite extension.   If

Circum(Γ ∪ cl(H), {End}, α) º− Ω

then

Γ Hº=mc Ω

where Circum(Γ ∪ cl(H), {End}, α) means to circumscribe with α varying.  The "if"
is strengthened to "if and only if" if it is true that circumscription is complete in this
case.

4.2.3. Example of Cardinality Circumscription

Consider the following simple example of circumscribing the cardinality of a
predicate.  The formula to be circumscribed contains only the predicate End, and three
constant symbols.  It asserts that either a is End, or both of b and c are.

S[End,a,b,c] = a_b ∧ a_c ∧ b_c ∧ ( End(a) ∨ ( End(b) ∧ End(c) ) )

The circumscription of End in S where the constants do not vary simply strengths the
disjunction to exclusive or.

Circum( S[End,a,b,c], End ) ≡ 
a_b ∧ a_c ∧ b_c ∧ ( End(a) ⊕ ( End(b) ∧ End(c) ) )

This is because there is a minimal model where both b and c are End.  Now try
circumscribing with a, b, and c varying.

Circum( S[End,a,b,c], End, {a, b, c} ) ≡
S[End,a,b,c] ∧ 
∀p,x,y,z . ( S[p,x,y,z] ∧ ∀w . p(w) ⊃ End(w) ) ⊃

∀w . End(w) ⊃ p(w)
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Instantiations for p, x, y, and z are chosen.

Let p = (λ u . u =b)
x = b
y = a
z = c

The instantiated schema becomes:

S[End,a,b,c] ∧ 
( S[(λ u . u =b),b,a,c] ∧ End(b) ) ⊃ ∀w . End(w) ⊃ w=b

Expanding S[(λ u . u =b),b,a,c]:

S[End,a,b,c] ∧ 
( b_a ∧ b_c ∧ a_c ∧ (b=b ∨ (a=b ∧ c=b)) ∧ End(b) ) ⊃

∀w . End(w) ⊃ w=b

Simplify, by eliminating the atoms in the second main conjunct which are implied by
the first:

S[End,a,b,c] ∧ 
End(b) ⊃ ∀w . End(w) ⊃ w=b

Now reason by cases.  Suppose End(b).  Then

∀w . End(w) ⊃ w=b

Since c_b, this means ¬End(c).  Together with S[End,a,b,c], this yields End(a).  On
the other hand, suppose  ¬End(b).  Then again, it must be the case that End(a).

So far we've shown that End(a) is a consequence of the circumscription.  Reinstantiat-
ing the schema strengthens the conclusion to that a is the only member of End.

Let p = (λ u . u =a)
x = a
y = b
z = c

It is straightforward to show that the instantiated schema:

S[End,a,b,c] ∧ 
( S[(λ u . u =a),a,b,c] ∧ End(a) ) ⊃ ∀w . End(w) ⊃ w=a
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implies

End(a) ⊃ ∀w . End(w) ⊃ w=a

Thus, circumscribing End with a, b, and c varying forces End to have cardinality 1:

Circum( S[End,a,b,c], End ) º− End(a) ∧ ∀w . End(w) ⊃ w=a

4.3. Example:  The Cooking World, Continued
We continue with the example of plan recognition in the cooking world.

There are two observations.  The first is described in the previous chapter:  the cook is
reported to be making spaghetti or fettucini.   We concluded that the cook was making
some kind of pasta dish.  The second observation is that the cook is making marinara
sauce.  From the second observation alone one could conclude that one of the dishes
involving marinara sauce, namely spaghetti marinara or chicken marinara, was being
prepared.  If we allow the possibility that the two observations are unrelated, then all
that one can conclude is the conjunction of the two conclusions; namely,

∃x . MakePastaDish(x) ∧ 
∃y . (MakeSpaghettiMarinara(y) ∨ MakeChickenMarinara(y))

But consider what holds in all the minimum covering models.  In such a model, there
is only one End events (in the present example).  Each of the variables x and y must
be interpreted as End event, since the types MakePastaDish, MakeSpaghettiMarinara,
and MakeChickenMarinara all specialize End.  Therefore x and y must be interpreted
as the same entity.  The disjointedness assumptions tell us that an entity cannot be
both a MakePastaDish and a MakeChickenMarinara.  Therefore the cook must be
making spaghetti marinara in all minimum covering models.  This is the conclusion
mc-entailed by the observations.

Following is a proof sketch.  The first part of the proof appears in the previous
chapter.

Second Observation
MakeMarinara(M2)

Upward Inference, Existential Instantiation
MakeSpaghettiMarinara(*I2) ∨ MakeChickenMarinara(*I2)
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Abstraction
MakePastaDish(*I2) ∨ MakeMeatDish(*I2)

Abstraction
EndEvent(*I2)

Conclusion from first Observation (Chapter 3)
EndEvent(*I1)

Strongest Minimality Assumption
∀ x,y . EndEvent(x) ∧ EndEvent(y) ⊃ x=y

Universal Instantiation & Modus Ponens
*I1 = *I2

Conclusion from first Observation (Chapter 3)
MakePastaDish(*I1)

Substitution of Equals
MakePastaDish(*I2)

Disjointedness Assumption
∀ x . ¬MakePastaDish(x) ∨ ¬MakeMeatDish(x)

Disjunction Elimination
¬MakeMeatDish(*I2)

Abstraction
MakeChickenMarinara(*I2) ⊃ MakeMeatDish(*I2)

Modus Tolens
¬MakeChickenMarinara(*I2)

Disjunction Elimination
MakeSpaghettiMarinara(*I2)
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Chapter 5
Incremental Recognition

A recognition problem is incremental when the recognizer is presented with a
temporal sequence of observations, Γ1, Γ2, … .  At any point in the sequence, the
recognizer can be queried as to the consequences of the observations made so far.

Suppose mc-entailment is used to model the recognition process.  Then after
observation Γn, the recognizer can conclude Ω just in case

Γ1 ∪ … ∪ Γn Hº=mc Ω

The mc-entailment relation is non-monotonic.  As Γi are added to the left-hand side,
the set of conclusions may no longer include Ω.  Consider the following specific case.

Each observation is of the occurrence of a single event.  Each observed event
must be a component of an End event; call these End events N1, N2, … Nn.  Let there
be a minimum covering model for Γ1, … Γn in which the extension of End has cardi-
nality 1; that is, N1=N2=…=Nn.  If the number of observations is of reasonable size,
it will quite often be the case that there is only a single specialization of End which
could account for all of the observations.  In particular, suppose that

Γ1 ∪ … ∪ Γn Hº=mc ∃ x . Ek(x)

Now suppose the n+1st observed event cannot be part of the same End event as all the
previous ones.  A minimum cover for Γ1, … Γn+1 must be of size 2.  The recognizer
can no longer assume that N1=N2=…=Nn.  Instead, it may be the case that
N1=Nn+1, and all the other Nj are equal; or that N2=Nn+1; and so on. There may be
as many as 2n different ways of grouping the observations, and each could correspond
to a different minimum covering model. The conclusion ∃x.Ek(x) must be withdrawn,
and replaced with a long disjunction of different specializations of End.

5.1. Deficiencies in the MC Model
This kind of non-monotonic behavior is justified as a normative theory of

what an agent should come to believe, if the minimization of End events is the only
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basis for combining information from different observations.  Objections can be
raised on the grounds of complexity and psychological plausibility.  The theory of
mc-entailment can be adjusted, however, to both have a more efficient computational
realization, and to more accurately reflex some of our intuitions about incremental
recognition processes.

5.1.1. The Combinatorial Problem

Once the minimum cardinality default is weakened to allow two or more
distinct End events, the number of ways of grouping the observations together as
components of the same End event grows exponentially.  In some domains the
various constraints associated with event types could quickly rule out most of these
possibilities.  But it seems clear that additional principles will eventually be needed to
deal with realistically-sized problems.

5.1.2. The Persistence Problem

Related to the combinational problem is the failure of mc-entailment to match
up with our intuitions about the way a person would go about solving an incremental
recognition problem.  Once several pieces of information are "tied together", it seems
unnatural to break that connection, simply because some seemingly unrelated piece of
information comes along.

 Consider the following (very!) short story, bearing in mind the event
hierarchy in the beginning of Chapter 1.

Leo needed some cash.  He took out his shotgun.  Then
he went to the bank.  Later that day, he was seen in the
woods.

As we read along, the descriptions of the Leo's getting a gun and going to the bank,
together with his state of needing money, invoke the bank robbery event (or plan or
script or …).  Walking in the woods is not part of robbing a bank.  None the less, the
story still seems to be about a bank robbery; we don't consider the possibility that Leo
got his gun in order to go hunting in the woods.  After the first three sentences, we
conclude something like

∃ x . RobBank(x) ∧ agent(x)=Leo
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and this belief persists even after the last sentence.  Mc-entailment would justify this
conclusion after the first three sentences, but after the last would only justify the
weaker conclusion:

∃ x,y .
(RobBank(x) ∧ (Hunt(y) ∨ Go-Hiking(y)) ∨ 
(CashCheck(y) ∧ Hunt(x))

What is going on?  One explanation is that we are minimizing End events in a
incremental fashion.  If we have to increase the number of End events to account for
the story, we do, but we try not to discard any previous conclusions.  Of course, new
information could force us to withdraw a previous conclusion.  So if the story
continued

Leo had spent a long time in line at the bank, waiting to
cash his paycheck.  He was glad to finally be out stalk-
ing the wild moose.

the earlier conclusion is eliminated.  But such stories appear either awkward or
deliberately misleading (as a mystery story should be); making an analogy with
syntax, one might call them garden-path stories.16

This manner of reasoning is understandable if one views the times between
observations as points at which the recognizer accepts his non-deductive conclusions
as full beliefs.  These beliefs, together with whatever else the recognizer believes, are
subject to minimal revision as contradictory information is learned.  But new non-de-
ductive conclusions are not (in this model) the basis for revising old beliefs.

The difficulty with this model is that the minimum cardinality defaults are al-
ways revised when the number of End events must be increased.  How then can con-
clusions based on these assumptions be retained?  Section 5.3 below develops a
model theory which exhibits this behavior, by separating existential and universal
conclusions: the former may persist while the latter are rejected.

5.2. Refining the Model

                                                
* A garden-path sentence is a syntactically "correct" sentence which is difficult to understand, because
the hearer makes incorrect decisions about its constituent structure before the end of the sentence is
reached.  The standard example is the sentence, "The horse raced past the barn fell."
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This section considers a number of factors that could go into a theory of incre-
mental recognition.

5.2.1. Incrementally Minimize Cardinality

Both the persistence problem and some aspects of the complexity problem are
addressed by incrementally minimizing the number of End events, as described
above.  Most of the plan recognition systems described in the literature perform an
incremental minimization, usually together with some of the following heuristics and
constraints.  Chapter 7 describes an algorithm for a plan recognizer which implements
this heuristic.

5.2.2. Sticky Covers

A heuristic for grouping observations described in [Huff & Lesser 82] is to as-
sociate each new observation with the most recent observation with which it can con-
sistently grouped.  We call this the sticky covering assumption, since each observation
tries to "stick" to the previous one.  The sticky heuristic solves the combinatorial
problem, as discussed in detail in Section 7.9.3, but is even more sensitive to garden-
path type errors.  An algorithm for calculating conclusions true in all sticky covers is
given in Chapter 7, but we have not tried to work out a corresponding model theory.

5.2.3. Discourse Clues

Much work in computational models of discourse attempts to find clues which
indicate how the various utterances which make up an extended discourse should be
grouped.  These take into consideration such features as "clue words" (such as "but"
and "therefore") [Grosz 77] and intonation [Pierrehumbert 77].

5.2.4. Likelihood Associations

Eventually we'll need to deal with the frequency with which an event appears
as a component of its different uses.   The less common uses may be ignored if
possible.  Such a quantitative approach is not antithetical to the work described here.
Once our qualitative methods choose all the possible interpretations of the data under
some set of simplicity heuristics, probabilistic methods can be applied to rank and
choose between the alternatives.  This is exactly the approach taken by expert systems
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which employ notions similar to covering models, as described in Sections 1.4 and
6.4.

5.3. Model Theory for Incremental Minimization
The section defines a weaker version of minimum covering model, and then

uses it to define an incremental operator, imc-entailment.

5.3.1. Minimum Covering Submodels

Mc-entailment justifies some kinds of conclusions that one would not
ordinarily draw from a set of observations.  Suppose that one observes A and B, and
C is the only End act which entails both A and B.  Then would seem reasonable to
conclude C, and mc-entailment justifies this conclusion.  However, mc-entailment
also justifies the conclusion that no End act other than C occurs; and that assumption
was the basis for the previous conclusion.  Yet the statement that only one event will
ever occur, at all times now and in the future, is almost surely false.  The problem is
that our intuitively acceptable conclusion C, has the same status as the dubious
conclusion that nothing else will ever happen.

Simply eliminating the cardinality minimization would eliminate the doubtful
conclusion, but at the cost of any combination of information from multiple observa-
tions.   A more attractive approach is to weaken the notion of mc-entailment.   Instead
of minimizing the number of End events per se, we really only need to minimize the
number of events which account for all the observations.  There may be other End
events which occur at other times and places, but they do not involve the current set
of observed events.  Instead of drawing conclusions based on the class of minimum
covering models, one should draw conclusions based on the larger class of models
which contain a minimum covering submodel.

Theorem 5.1 states that all the existential conclusions that one can obtain by
considering minimum covering models can also be obtained by considering the larger
class.  This will provide the basis for retaining conclusions such as

∃ x . RobBank(x) ∧ agent(x)=Leo

while dropping the assumption that

∀ x,y . End(x) ∧ End(y) ⊃ x=y
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5.3.1.1. Definitions

M1 is a submodel of M2 if the domain of M1 is a subset of M2; M1 and M2 agree on
all predicates for tuples consisting only of elements in M1; and M1 and M2 agree on
the interpretation of all functions, restricted to the domain of M1.  If M1 is both a
covering model of Γ relative to H, and has a submodel M2 which is a minimum cover
for Γ relative to H, we say M1 contains a minimum cover for Γ  relative to H.

Ω is mcs-entailed by Γ, written

Γ Hº=mcs Ω

if Ω holds in all models which contain a minimum cover of Γ relative to H.  For
brevity, we will call a model which contains a minimum cover an mcs-model.

5.3.1.2. Theorem 5.1  (Non-Universal Conclusions)

Let Ω be a sentence which, when written with all quantifiers in initial position,
contains no universal quantifiers.  Then

Γ Hº=mcs Ω

if and only if

Γ Hº=mc Ω

5.3.2. Monotonic Incremental Recognition

The intuition behind a monotonic theory of incremental recognition is that
after the recognizer obtains a piece of evidence, he believes forever the consequences
of that evidence.  This section defines the final operator which relates a sequence of
observations to its incrementally minimum covering entailed conclusions.  Theorem
5.2 states that this operator has the desired properties of acting like mc-entailment
when there is only one observation, and allowing existential conclusions to persist as
new observations are made.

5.3.2.1. Definitions
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Let Γ = (Γ1, Γ2, … Γn) be an observation sequence.  Following is a recursive
definition of the class of incremental minimal covers of Γ.  Let us say that M is a n-
candidate if M is a covering model of Γ relative to H, and (if n>1) M is an incre-
mental minimum cover of (Γ1, Γ2, … Γn).  Then M is an incremental minimal cover
of Γ relative to H if M is an n-candidate, and:

(i)  n=1, and M contains a minimum cover for Γ relative to H.

(ii) or n > 1, and M contains a submodel M2 which has minimum
cardinality in End among covering models of Γ which are
submodels of n-candidates.

Ω is imc-entailed by  (Γ1, Γ2, … Γn), written

 (Γ1, Γ2, … Γn) Hº=imc Ω

if Ω holds in all models which are incremental minimum covers of (Q1, Q2, … Qn)
relative to H.

5.3.2.2. Theorem 5.2  (Incremental Recognition)

In the case of a single observation, imc-entailment is the same as mcs-entailment.

(Γ1) Hº=imc Ω

if and only if
Γ1 Hº=mcs Ω

In the case of multiple observations, imc-entailment is monotonic.

(Γ1, … Γn-1) Hº=imc Ω

implies
(Γ1, … Γn-1, Γn) Hº=imc Ω
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Chapter 6
Examples

6.1. The Cooking World, Once More
The examples at the end of Chapters 3 and 4 illustrated inference from a dis-

junctive observation, and the combination of observations to uniquely identify the
plan in progress.  The next example illustrates two other important features of our
system:  the ability to handle disjunctive hypotheses, and to draw conclusions that
reflect an abstract description of a class of possible plans.

Suppose that the observer learns that the cook is preparing some kind of sauce.
This is not enough information to conclude a particular basic dish is being created:
one cannot (as appears to be the case in most of the plan recognition systems
described in Chapter 1) imagine that a single plan is evoked.  Instead, one is justified
in concluding that the cook is making some Pasta Dish, or Chicken Marinara.  This
disjunction collapses, via the abstraction axioms, to the fact that an event of type
PrepareMeal is occurring.  This final piece of information, non-specific as it is, may
still be of great interest:  for instance, if we are hungry!  The example also illustrates
the importance of adopting a formal framework that guarantees completeness:  all
possible uses of an event are considered.  A noted in Chapter 3, the only direct use of
MakeSauce is MakePastaDish.  It is not clear whether any of the earlier heuristic-
based plan recognition systems would consider MakeChickenMarinara, or if they
would immediately (and unjustifiably) jump to the first conclusion.   The proof so far
is:

Observation
MakeSauce(Obs1)

Component/Use, Existential Instantiation
MakePastaDish(*I1) ∨ MakeChickenMarinara(*I1)
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Abstraction
MakePastaDish(*I1) ∨ MakeMeatDish(*I1)

PrepareMeal(*I1)

End(*I1)

 Now let the next observation be that the agent is making Noodles, and assume the
End event inferred from the first observation is the same as the End event inferred
from the second.  Mc-entailment lets us conclude that a plan to make some Pasta Dish
is in progress.  We do not need (cannot, in fact) conclude that a particular  kind of
Pasta Dish is under construction.

Second Observation
MakeNoodles(Obs2)

Component/Use, Existential Instantiation
MakePastaDish(*I2)

Abstraction
PrepareMeal(*I2)
End(*I2)

Strongest Minimality Assumption
∀ x,y . End(x) ∧ End(y) ⊃ x=y

Universal Instantiation & Modus Ponens
*I1 = *I2

Substitution of Equals
MakePastaDish(*I1)

Disjointedness Assumption
∀ x . ¬MakePastaDish(x) ∨ ¬MakeMeatDish(x)

Disjunction Elimination
¬MakeMeatDish(*I1)

Abstraction
MakeChickenMarinara(*I1) ⊃ MakeMeatDish(*I1)
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Modus Tolens
¬MakeChickenMarinara(*I1)

Disjunction Elimination
MakePastaDish(*I1)

Another example from this domain appears in Chapter 7 and in Appendix E
(Transcripts).  That example shows how one observation can constrain a different ob-
servation to be of specialized in a particular way.   Specifically, a later observation of
MakeMarinara constrains an earlier observation of MakeNoodles to be in fact an in-
stance of MakeSpaghetti.  Information can flow from one observation to another.

6.2. Indirect Speech Acts
A proper treatment of discourse requires careful attention to the representation

of beliefs and intentions, as well as to the relation of an utterance to its meaning.  An
fully adequate treatment therefore necessitates the use of some sort of intensional or
modal logic.  None the less, we will try to approximate the problem of recognizing a
speech act using the tools at hand, in order to suggest how the present approach might
be extended to the discourse domain.

6.2.1. Representation

Recall that properties are represented by terms.  The property that an agent A
knows P is simply represented by applying the function know to terms for the agent
and property P.  The function can relates an agent and a property the agent can bring
about.   We assume that for every act (event) type, there is a property which holds just
after an instance of the event occurs.  Thus the fact that John knows at time T1 that
Mary can give John the salt might be written:

 Holds(know(John,can(Mary,gave(Mary,John,salt))), T1)

Finally we need the function knowif, which relate an agent and a property whose
truth value the agent knows.  Many objections can be raised to this notation, such as
its referential transparency, and the omission of time indexes on the objects of beliefs,
but it suffices for the example.

The following diagram shows part of the event hierarchy.  The types Sur-
faceImperative and SurfaceQuestion classify utterances of commands and questions,
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respectively.  Request and InformIf are speech act event type.  A request can be spe-
cialized as a Command, a DirectRequest, or an IndirectRequest.  Each of these
specializations corresponds to different decomposition of the Request speech act,
such as appears in [Litman 84].  Some of the discourse plans which employ speech
acts are ObtainByAsking and FindOutByAsking.  These discourse plans specialize
more general methods for obtaining objects and finding out information.  There may
be a great deal of structure above, or the discourse plans themselves may be taken as
End events, and thus terminate analysis.  The example here does not depend on any
higher structure in the library.

Language Use 
Hierarchy

Obtain Find Out

Obtain By 
Asking Find Out  

By Asking

Give Request InformIf

Command Direct 
Request

Indirect 
Request

Surface 
Imperative

Surface 
Question

agent 
object 
preTime 
postTime

agent 
info 
preTime 
postTime

speaker 
hearer 
reqGoal

speaker 
hearer 
content

End

s s

s1
s2 s1 s2

figure 6.1:  Language Use Hierarchy

Following is an abbreviated list of the axioms for this hierarchy.  All the
actions have roles of agent and time, and other roles as specified.
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• Non-linguistic Acts:  Obtain has the role of the object to be obtained.  During pre-
Time the agent does not have the object; during postTime the agent does.  FindOut
has the role info, a property,  whose truth-value is to be determined.  During preTime
the agent does not knowif the info is true or false; during postTime the agent does.

∀x . Obtain(x) ⊃
Never(have(agent(x),obj(x)), preTime(x)) ∧ 
meets(preTime(x), time(x)) ∧ … 
Holds(have(agent(x),obj(x)), postTime(x)) ∧ 
meets(time(x), postTime(x)) ∧ … 

∀x . FindOut(x) ⊃
Never(knowif(agent(x), info(x)), preTime(x)) ∧ 
meets(preTime(x), time(x)) ∧ 
Holds(knowif(agent(x), info(x)), postTime(x)) ∧ 
meets(time(x), postTime(x)) ∧ … 

• Discourse Acts:  The decomposition of ObtainByAsking states that the agent per-
forms a Request, whose reqGoal is that the hearer gave the agent the object.  This
step, s1, is followed by step s2, in which the hearer gives the agent the object.

∀x . ObtainByAsking(x) ⊃
Request(s1(x)) ∧ 
reqGoal(s1(x)) = gave(hearer(s1(x)), agent(x), obj(x)) ∧ 
Give(s2(x)) ∧ …

FindOutByAsking is very similar; the decomposition states that the agent performs a
Request, whose reqGoal is that the hearer has informed the agent of the truth value
of the info.  In s2 the affected performs an InformIf to the agent.

∀x . FindOutByAsking(x) ⊃
Request(s1(x)) ∧ 
reqGoal(s1(x)) = informedIf(hearer(s1(x)), agent(x), info(x)) ∧ 
InformIf(s2(x)) ∧ …

• Speech Acts:  Each of the specializations of a Request contains a single utterance
act in its decomposition.  The single step in a DirectRequest is a surface yes/no
question.  The reqGoal of the DirectRequest must be that the affected has informed
the agent of the truth value of the (propositional) content of the SurfaceQuestion.
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∀x . DirectRequest(x) ⊃
SurfaceQuestion(s(x)) ∧ 
reqGoal(x) = informedIf(hearer(x), speaker(x), content(s(x))) ∧ … 

The single step of an IndirectRequest is also a SurfaceQuestion; however, there is a
different relation between the content of the question and the reqGoal of the request.
The question must be a "can" question, of the form, "can the affected bring about the
goal of the request?"

∀x . IndirectRequest(x) ⊃
SurfaceQuestion(s(x)) ∧ 
content(s(x)) = can(hearer(x), reqGoal(x)) ∧ … 

6.2.2. Assumptions

The following component/use axioms are generated by assuming that the
hierarchy is complete.   Whenever a SurfaceQuestion occurs, it must be part of a Di-
rectRequest or an IndirectRequest; and whenever a Request occurs, it must be part of
an ObtainByAsking or FindOutByAsking.

∀x . SurfaceQuestion(x) ⊃
(∃y . DirectRequest(y) ∧ x=s(y)) ∨ 
(∃y . IndirectRequest(y) ∧ x=s(y)) 

∀x . Request(x) ⊃
(∃y . ObtainByAsking(y) ∧ x=s1(y)) ∨ 
(∃y . FindOutByAsking(y) ∧ x=s1(y)) 

6.2.3. The Problem

Suppose S says to H, "Can you give me the salt?"  Real world knowledge
(part of HG) includes the statement that at all times, S knows whether or not H can
give S the salt:

∀t . Hold(knowIf(S, can(H, gave(H,S,salt))), t)

An instance of a SurfaceQuestion, Q1, occurs, with the content, "H can give S the
salt".
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SurfaceQuestion(Q1) ∧ speaker(Q1) = S ∧ hearer(Q1) = H ∧ 
content(Q1) = can(H, gave(H,S,salt))

Now apply the upward inference assumption for SurfaceQuestion.  It must be case
that Q1 is either a step of some DirectRequest (call it *R1) or some IndirectRequest.
In either case the constraints can be used to determine the possible reqGoals.  In the
direct case, the goal must be for H to tell S whether or not H can give S the salt.  In
the indirect case, the goal must be for H to give S the salt.

DirectRequest(*R1) ∧ Q1 = s(*R1) ∧ 
reqGoal(*R1) = informedIf(H,S, can(H, gave(H,S,salt)))

∨ 
IndirectRequest(*R1) ∧ Q1 = s(*R1) ∧ 
reqGoal(*R1) = gave(H,S,salt)

Neither alternative can (yet) be eliminated on the basis of inconsistent constraints.  So
we apply the second upward closure assumptions to this statement, yielding a four-
way disjunction describing the act *R2 which has step *R1.  Constraint information
can now be used to eliminate all but one alternative.

FindOut Action

Direct Request : Precondition Fails

*R1 is a direct request, and the goal of *R1 is to be informed if
H can pass the salt.  *R1 is the first step of the FindOut action.
However, the constraint that S does not know if H can pass the
salt before the action occurs is provably false.

Indirect Request : Ill-Formed

*R1 is an indirect request, and the goal of *R1 is for H to pass
the salt.  *R1 is the first step of the FindOut action.  However,
to be part of FindOut, the goal of *R1 must be of the form in-
formedIf(–), instead of gave(–).  Therefore this alternative is
ill-formed.

Obtain Action

Direct Request : Ill-Formed

*R1 is a direct request, and the goal of *R1 is to be informed if
H can pass the salt.  *R1 is the first step of the Obtain action.
However, to be part of Obtain, the goal of *R1 must be of the
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form gave(–), instead of informedIf(–).  Therefore this alterna-
tive is ill-formed.

Indirect Request : Accepted

*R1 is an indirect request, and the goal of *R1 is for H to pass
the salt. *R1 is the first step of the Obtain action.  This alterna-
tive is well formed, and no violated constraints can be found.

The follow statement encodes this analysis.  An ✘  appears at the point in each
alternative where an inconsistency is detected.  The ill-formed alternatives are ruled
out by the property identity axioms discussed in Section 2.2.

FindOutByAsking(*R2) ∧ *R1 = s1(*R2) ∧ 
DirectRequest(*R1) ∧ Q1 = s(*R1) ∧ 
reqGoal(*R1) = informedIf(H,S, can(H, gave(H,S,salt))) ∧
reqGoal(s1(*R2)) = informedIf(H,S, info(*R2)) ∧ 
info(*R2) = can(H, gave(H,S,salt)) ∧ 

  ✘ Never( knowif(S, can(H, gave(H,S,salt))), preTime(*R4))
∨ 

FindOutByAsking(*R2) ∧ *R1 = s1(*R2) ∧ 
IndirectRequest(*R1) ∧ Q1 = s(*R1) ∧ 
reqGoal(*R1) = gave(H,S,salt)

  ✘ reqGoal(s1(*R2)) = informedIf(H,S, info(*R2)) ∧ 
∨

ObtainByAsking(*R2) ∧ *R1 = s1(*R2) ∧ 
DirectRequest(*R1) ∧ Q1 = s(*R1) ∧ 
reqGoal(*R1) = informedIf(H,S, can(H, gave(H,S,salt))) ∧

  ✘ reqGoal(s1(*R2)) = gave(H,S, obj(*R2)) ∧ 
∨ 

ObtainByAsking(*R2) ∧ *R1 = s1(*R2) ∧ 
IndirectRequest(*R1) ∧ Q1 = s(*R1) ∧ 
reqGoal(*R1) = gave(H,S,salt) ∧
reqGoal(s1(*R2)) = gave(H,S,object(*R2)) ∧ 

  ✓ object(*R2) = salt

The final disjunct must be true:  The recognizer is justified in concluding that S is
performing the plan to obtain the salt by asking for it.

ObtainByAsking(*R2) ∧ object(*R2) = salt ∧ *R1 = s1(*R2) ∧ 
IndirectRequest(*R1) ∧ reqGoal(*R1) = gave(H,S,salt) ∧ Q1 = s(*R1) ∧ 
SurfaceQuestion(Q1) ∧ content(Q1) = can(H, gave(H,S,salt))
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6.3. Operating Systems: Multiple Events
Several research groups have examined the use of plan recognition in "smart"

operating systems, which could answer user questions and/or watch what the user was
doing, and make suggestions about potential pitfalls and more efficient ways of
accomplishing the same tasks.  A user often works on several different tasks during a
single session at the terminal, and frequently jumps back and forth between
uncompleted tasks.  Therefore a plan recognition system for this domain must be able
to handle multiple concurrent unrelated plans.  The very generality of the present
approach is an advantage in this domain, where the focus-type heuristics used by
other plan recognition systems are not so applicable.

6.3.1. Representation

End

Rename

Modify
Rename 
by Move

Rename 
by Copy

CopyDelete EditMove

old 
new

file

old 
new

file old 
new

file

backup 
stepedit 

step

delete 
backup 
step

copy 
orig stepdelete 

orig 
step

move 
step

figure 6.2:  Operating System Hierarchy

Consider the following hierarchy.  There are two End plans:  to Rename a file,
and to Modify a file.

∀x . Rename(x) ⊃ End(x)
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∀x . Modify(x) ⊃ End(x)

There are two ways to specialize the Rename event.  A RenameByCopy involves
Copying a file, and then Deleting the original version of the file, without making any
changes in the original file.

∀x . RenameByCopy(x) ⊃ Rename(x)

∀x . RenameByCopy(x) ⊃
Copy(s1(x)) ∧ 
Delete(s2(x)) ∧ 
old(s1(x)) = old(x) ∧ 
new(s1(x)) = new(x) ∧ 
file(s2(x)) = old(x) ∧ 
BeforeMeet(time(s1(x)), time(s2(x))) ∧ 
Never(modified(old(x)), time(x)) ∧ 
Starts(time(s1(x)), time(x)) ∧ 
Finishes(time(s2(x)), time(x))

A better way to rename a file is to RenameByMove, which simply uses the Move
command.  A helpful system might suggest that a user try the Move command if it
recognizes many instances of RenameByCopy.

∀x . RenameByMove(x) ⊃ Rename(x)

∀x . RenameByMove(x) ⊃
Move(s1(x)) ∧ 
old(s1(x)) = old(x) ∧ 
new(s1(x)) = new(x) 

The Modify command has three steps.  In the first, the original file is backed up by
Copying.  Then the original file is Edited.  Finally, the backup copy is deleted.
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∀x . Modify(x) ⊃
Copy(s1(x)) ∧ 
Edit(s2(x)) ∧ 
Delete(s3(x)) ∧ 
old(s1(x)) = file(x) ∧ 
file(s2(x)) = file(x) ∧ 
file(s3(x)) = new(s1(x)) ∧ 
BeforeMeet(time(s1(x)), time(s2(x)) ) ∧ 
BeforeMeet(time(s2(x)), time(s3(x)))

6.3.2. Assumptions

Following are some of the statements obtained by minimizing the hierarchy.
The Component/Use assumptions include the statement that every Copy action is
either part of a RenameByCopy or of a Modify.

∀x . Copy(x) ⊃
(∃y . RenameByCopy(y) ∧ x=s1(y)) ∨ 
(∃y . Modify(y) ∧ x=s1(y)) 

Every Delete event is either the second step of a RenameByCopy, or the third step of
a Modify, in any covering model.

∀x . Delete(x) ⊃
(∃y . RenameByCopy(y) ∧ x=s2(y)) ∨ 
(∃y . Modify(y) ∧ x=s3(y)) 

6.3.3. The Problem

Suppose the plan recognition system observes each action the user performs.
Whenever a new file name is typed, the system generates a constant with the same
name, and asserts that that constant is not equal to any other file name constant.  (We
don't allow UNIX§ style "links"!)  During a session the user types the following
commands.

(1) % copy foo bar

(2) % copy jack sprat

(3) % delete foo
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The system should recognize two concurrent plans.  The first is to rename the file
"foo" to "bar".  The second is to either rename or modify the file "jack".  Let's
examine how these inferences could be made.
Statement (1) is encoded:

Copy(C1) ∧ old(C1)=foo ∧ new(C1)=bar

The decomposition completeness axiom for Copy lets the system infer that C1 is
either part of a RenameByCopy or Modify.  A new name *I1 is generated (by
existential instantiation) for the disjunctively-described event.

End(*I1) ∧ 
( (RenameByCopy(*I1) ∧ C1=s1(*I1) )
  ∨ 

(Modify(*I1) ∧ C1=s1(*I1) )
)

Statement (2) is encoded:

Copy(C2) ∧ old(C2)=jack ∧ new(C2)=sprat ∧ Before(time(C1), time(C2)) 

Again the system creates a disjunctive description for the event *I2, which has C2 as
a component.

End(*I2) ∧ 
( (RenameByCopy(*I2) ∧ C2=s1(*I2) )
  ∨ 

(Modify(*I2) ∧ C2=s1(*I2) )
)

The next step is to minimize the number of End events.  The system might attempt to
apply the strongest minimization default, that

∀x,y . End(x) ∧ End(y) ⊃ x=y

However, doing so would lead to a contradiction.  Because the types RenameByCopy
and Modify are disjoint, *I1=*I2 would imply that C1=C2; however, the system
knows that C1 and C2 are distinct -- among other reasons, their times are known to be
not equal.  The next strongest minimality default, that there are two End events,
cannot lead to any new conclusions.

Statement (3), the act of deleting "foo", is encoded:
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Delete(C3) ∧ file(C3)=foo ∧ Before(time(C2), time(C3)) 

The system infers by the decomposition completeness assumption for Delete that the
user is performing a RenameByCopy or a Modify.  The name *I3 is assigned to the
inferred event.

End(*I3) ∧ 
( (RenameByCopy(*I3) ∧ C3=s2(*I3) )
  ∨ 

(Modify(*I3) ∧ C3=s3(*I3) )
)

Again the system tries to minimize the number of End events.  The second strongest
minimality default says that there are no more than two End events.

∀x,y,z . End(x) ∧ End(y) ∧ End(z) ⊃
x=y ∨ x=z ∨ y=z

In this case the formula is instantiated as follows.

*I1=*I2 ∨ *I1=*I3 ∨ *I2=*I3

We've already explained why the first alternative is impossible.  Thus the system
knows 

*I1=*I3 ∨ *I2=*I3

The system then reduces this disjunction by reasoning by cases.  Suppose that
*I2=*I3.  This would mean that the sequence

(2) % copy jack sprat

(3) % delete foo

is either part of a RenameByCopy or of a Modify, described as follows.
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End(*I2) ∧ 
( (RenameByCopy(*I2) ∧ C2=s1(*I2) ∧ C3=s2(*I2) ∧
  ✘ old(*I2) = jack ∧ old(*I2) = foo )
∨ 

(Modify(*I2) ∧ C2=s1(*I2) ∧ C3=s3(*I2) ∧ 
file(s3(*I2)) = foo ∧ 
new(s1(*I2)) = sprat ∧ 

  ✘ file(s3(*I2)) = new(s1(*I2))) )
)

But both disjuncts are impossible, since the files which appear as roles of each event
do not match up (as marked with  ✘ 's).  Therefore, if the minimality default holds, it
must be the case that

*I1=*I3

This means that the observations

(1) % copy foo bar

(3) % delete foo

should be grouped together, as part of a Rename or Modify.  This assumption leads
the system to conclude the disjunction:

End(*I1) ∧ 
( (RenameByCopy(*I1) ∧ C1=s1(*I1) ∧ C3=s2(*I1) ∧

old(*I1) = foo ∧ new(*I1) = bar )
∨ 

(Modify(*I1) ∧ C1=s1(*I1) ∧ C3=s3(*I1) ∧ 
file(s3(*I1)) = foo ∧ 
new(s1(*I1)) = bar ∧ 

  ✘ file(s3(*I1)) = new(s1(*I1))) )
)

The second alternative is ruled out, since the actions cannot be part of the same
Modify.  The system concludes observations (1) and (3) make up a RenameByCopy
act, and observation (2) is part of some unrelated End action.
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End(*I1) ∧ 
RenameByCopy(*I1) ∧
old(*I1) = foo ∧ new(*I1) = bar ∧ 
End(*I2) ∧ 
( (RenameByCopy(*I2) ∧ C2=s1(*I2) )
  ∨ 

(Modify(*I2) ∧ C2=s1(*I2) )
)

Further checking of constraints may be performed, but no inconsistency will arise.  At
this point the plan recognizer may trigger the "advice giver" to tell the user:

*** You can rename a file by typing
*** % move oldname newname

6.4. Medical Diagnosis
As discussed in Section 1.4, there are close links between the kinds of reason-

ing involved in plan recognition, and that employed in medical diagnosis.  The
following example is drawn from [Pople 82], and was handled by CADUCEUS, an
expert system that deals with internal medicine.  We have made a number of
simplifications, but the key points of the example remain.  These include the need to
consider specializations of an pathological state (abstract event type) in order to
explain a symptom, finding, or state, and the process of combining or unifying the
tasks invoked by each finding.  This combination process corresponds to the
minimization of End events in the plan recognition framework.

6.4.1. Representation

The figure below illustrates a small part of CADUCEUS's knowledge base.
The thin "component" arcs are here understood as meaning "can cause".  We've added
the type End as an abstraction of all pathological states which are not caused by other
pathological states.   The basic specializations of End are called specific disease
entities.  We've simplified the hierarchy by making the specializations of anemia and
shock specific disease entities; in the actual knowledge base, anemia and shock are
caused by other conditions.



82

82

Anemia

Pa llor

End  

Shoc k Hepa tob ila ry 
Involvement

Non-Hemolyitic  
Anemia

Hemolytic  
Anemia

Hyperb ili- 
rub inemia

Unc onjuga ted  
Hyperb ili- 
rub inemia

Conjuga ted  
Hyperb ili- 
rub inemia

Gilberts 
Disease

Bila ry 
Trac t

Hep to 
Cellula r 

Involvement

Cirrhosis

Jaundice

figure 6.3:  Medical Hierarchy

The logical encoding of this network is as expected.  The symptoms caused by
a disease appear in the decomposition axiom for that disease.  This is a considerable
simplification over the original CADUCEUS model, in which the causal connections
need only be probable.  Symptoms of high probability, however, are taken by CA-
DUCEUS as necessary manifestations, and CADUCEUS will rule out a disease on
the basis of the absence of such symptoms.  The constraints that appear at the end of
a decomposition axiom would include conditions of the patient that are (very nearly)
necessary for the occurrence of the disease, but are not themselves pathological.
These could include the age and weight of the patient, his immunization history, and
so on.  Thus a constraint on Alzheimer's disease would include the fact that the
patient is over 40.

A few of the axioms and assumptions follow.  All kinds of hyperbilirubin-
emia cause Jaundice , and both anemia and shock cause pallor .

∀ y . hyperbilirubinemia(y) ⊃ jaundice(j(y))

∀ y . anemia(y) ⊃ pallor(p(y))
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∀ y . shock(y) ⊃ pallor(p(y))

Unconjugated  hyperbilirubinemia is a kind of hyperbilirubinemia, which can be
caused by hemolytic anemia, a kind of anemia.

∀ x . unconjugated-hyperbilirubinemia(x) ⊃ hyperbilirubinemia(x)

∀ y . hemolytic-anemia(y) ⊃ hyperbilirubinemia(h(y))

∀ x . hemolytic-anemia(x) ⊃ anemia(x)

It may seem a bit odd that we need to use a first-order language, when the
problem would seem to be expressible in purely propositional terms.  The problem
with using propositional logic arises from the abstract pathological states.  A realistic
medical knowledge base incorporates several methods of classifying diseases, leading
to a complex and intertwined abstraction hierarchy.  It is very likely that any patient
will manifest at least two distinct pathological states (perhaps causally related) that
specialize the same state.  In a purely propositional system such a pair would appear
to be competitors, as in a differential diagnosis set.  But this would plainly be
incorrect, if the two states were causally related.

6.4.2. Assumptions

Now we restrict our attention to the covering models of this hierarchy. The ex-
haustiveness assumptions include the fact that every case of hyperbilirubinemia is
either conjugated or unconjugated.

∀ x . unconjugated-hyperbilirubinemia(x) ⊃ 
conjugated-hyperbilirubinemia(x) ∨ 
unconjugated-hyperbilirubinemia(x) 

Disjointedness assumptions include the fact that the pathological states of anemia,
shock, and hepatobilary involvement are distinct.  It is important to note that this
does not mean that the states cannot occur simultaneously; rather, that none of these
states abstract each other.

∀ x . ¬anemia(x) ∨ ¬shock(x)

∀ x . ¬anemia(x) ∨ ¬hepatobilary-involvement(x)
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∀ x . ¬shock(x) ∨ ¬hepatobilary-involvement(x)

Finally, the component/use assumptions, better called the manifestation/cause
assumptions, allow one to conclude the disjunction of causes of a pathological state,
thus creating a differential diagnosis set.  An important special case occurs when
there is only one cause, usually at a fairly high level of abstraction, for a state.  An
example of this is the association of jaundice with hyperbilirubinemia.  (Pople calls
this case a constrictor relationship between the manifestation and cause, and argues
that such cases play a critical role in reducing search in diagnostic problem solving.)
A less conclusive assumption says that pallor indicates anemia or shock.

∀ x . jaundice(x) ⊃ ∃ y . hyperbilirubinemia(y) ∧ x=j(y)

∀ x . pallor(x) ⊃ 
(∃ y . anemia(y) ∧ x=p(y)) ∨ 
(∃ y . shock(y) ∧ x=p(y)) 

6.4.3. The Problem

We'll sketch the kind of reasoning that goes on when the diagnostician is con-
fronted with two symptoms, jaundice and pallor.  From jaundice the diagnostician
concludes hyperbilirubinemia.  This leads (by exhaustion) to either the conjugated
or unconjugated varieties.  Now CADUCEUS (and perhaps a human physician?)
may try to perform tests to decide between these alternatives at this point.  The frame-
work we've developed, however, allows us continue inference in each alternative.
The first leads to hemolyic anemia and then anemia; the second to three different
kinds of hepatobilary involvement.  The following graph shows the final
conclusion.
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figure 6.4:  Conclusions from Jaundice

The graph represents the following logical sentence.  (Further steps in this example
with be illustrated only in the graphical form.)

jaundice(*J1) ∧ hyperbilirubinemia(*H1) ∧ 
( ( unconjugated-hyperbilirubinemia(*H1) ∧ 

hemolytic-anemia(*E1) ∧ 
anemia(*E1)

)
∨ 
(  conjugated-hyperbilirubinemia(*H1) ∧ 

( Gilberts-disease(*E1)  ∨ 
bilary-tract(*E1) ∨
heptocellular-involvement(*E1)

) ∧ 
hepatobilary-involvement(*E1)

)
) ∧   
End(*E1)
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Next the diagnostician considers pallor.  This leads to a simple disjunction.

Anemia (E2)

Pa llor(P2)

End(E2) 

Shoc k(E2)

figure 6.5:  Conclusions from Pallor

Finally, the diagnostician applies Occam's razor, by making the assumption that the
symptoms are caused by the same disease.  This corresponds to equating the specific
disease entities at the highest level of abstraction (End) in each of the previous
conclusions.  In other words, we apply the strongest minimum cardinality default.
This allows the diagnostician to conclude that the patient  is suffering from hemolytic
anemia, which has led to unconjugated hyperbilirubinemia.
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End(E1) 

Hemolytic  
Anemia (E1)

Hyperb ili- 
rub inemia (H1)

Unc onjuga ted  
Hyperb ili- 
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figure 6.6:  Conclusions from Jaundice and Pallor

A practical medical expert system must deal with a great many problems not
illustrated by this simple example.  We have not dealt with the whole problem of
generating appropriate tests for information; we cannot assume that the expert system
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is passively soaking in information, like a person reading a book.  The full
CADUCEUS knowledge base is enormous, and it is not clear whether the complete
algorithms discussed in the next chapter could deal with it.  It does seem plain,
however, that our framework for plan recognition does formalize some key parts of
diagnostic reasoning.  The rich and highly structured knowledge base required for
medical diagnosis makes it a very good domain for exercising any formal theory of
non-deductive inference.
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Chapter 7
Algorithms for Plan Recognition

7.1. Directing Inference
Two related problems arise in implementing our theory of plan recognition:

inference must be directed toward some particular goal, and must be limited in some
manner to insure that our programs don't run forever.  The pattern of inference appar-
ent in the previous examples suggests some answers:  from each observation, apply
Component/Use assumptions until an instance of type End is reached.  That is, create
a proof that some instance of End occurs.  Reduce the number of alternatives (or
cases in the proof) by checking constraints locally.  In order to combine information
from two observations, equate the instances of End inferred from each and propagate
the equality, further reducing disjunctions.  If all alternatives are eliminated, then
conclude that the observations belong to distinct End events.  Multiple simultaneous
End events can be recognized by considering all ways of grouping the observations.

These operations suggest a graph based implementation, rather than one
which stores sentences in clausal form.  A graph is built bottom-up, from a node
which represents an observed event, to a node which represents an End event.  When
we need to infer up the abstraction hierarchy, we create a new node of the more
abstract kind, and record the the more specialized node as an alternative for the
abstract node.  If this is done properly, the result can be viewed as an and/or graph,
rooted at the End node.  The alternative (OR) arcs are marked with an equality sign
(=), and the component (AND) arcs are labeled with the role function name.  The
figure below shows the graph that is generated an observation of MakeMarinara.
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figure 7.1:  E-Graph for MakeMarinara

These structures are called explanation graphs, or e-graphs.  The graph has two com-
plementary interpretations.  It can be viewed as a proof that an instance of End
occurs, given instances of the events in its leaves.  It can also be interpreted as a
sentence of FOL, which states that an instance of End occurs, that this instance is
equal to one of a number of other tokens of more specific type, and so on.  The graph
above can be interpreted as the sentence

∃ n7,n6,n5,n4,n3,n2,n1 . End(n7) ∧ n7=n6 ∧ PrepareMeal(n6) ∧
(  ( n6=n4 ∧ MakePastaDish(n4) ∧

n4=n2 ∧ MakeSpaghettiMarinara(n2) ∧
step2(n2)=n1 ∧ MakeMarinara(n1) )

 ∨ ( n6=n5 ∧ MakeMeatDish(n5) ∧
n5=n3 ∧ MakeChickenMarinara(n3) ∧
step5(n3)=n1 ∧ MakeMarinara(n1) ) )

Section 7.2.3 below states the rules for translating an explanation graph into an FOL
sentence.  The algorithms described in this chapter provide the specialized and deter-
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ministic proof rules for constructing explanation graphs, given some initial
descriptions of event instances.

Each e-graph describes one End event.  The occurrence of several End events
is represented by a conjunctively-joined set of e-graphs, called an hypothesis.  To
account for all possible ways of grouping the observed events, it may be necessary to
consider a disjunctively joined set of hypotheses.  The interpretation of such a set of
hypotheses is a sentence true in all minimum covering models of the observations.

7.2. Explanation Graphs

7.2.1. Basic Elements of an E-Graph

An e-graph is made up of various relations over a set of values.  A value can
be a rigid designator, a fuzzy temporal constraint, or a node.

• Rigid designators are unique names for objects; distinct rigid designators refer to
distinct objects.  It is a convenient philosophical fiction that proper names like "John
Smith" are rigid designators.   The rigid designators can be identified with a distin-
guished subset of FOL constants.

• A time interval can be thought of as a pair of real numbers, representing its
beginning and ending instance according to some absolute scale.   Yet we can rarely
specify a particular time interval in so precise a fashion.  Instead, we write
expressions which place some relative constraint on the interval.  Various schemes
have been proposed for writing down these constraints, such as Allen's interval
operators, which have been used in this thesis up to this point.  A special but very
useful kind of constraint can be represented by a list of four numbers.  Where I is a
time interval, and start-min, start-max, end-min, and end-max are numbers on some
absolute temporal scale,

I ∈ (start-min, start-max, end-min, end-max)

is true when the first instance of I falls between start-min and start-max inclusive, and
the final instance of I falls between end-min and end-max inclusion.   A large
fragment of Allen's interval logic can be translated into an algebra over these "fuzzy"
temporal constraints.  Appendix D shows how this may be done.   The main
advantage of this approach is that intervals are all related to a single universal scale,
so we do not need to maintain a table relating every interval to every other interval (as
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in [Allen 1983b]).   Furthermore, disjunctions in the e-graph can lead to disjunctive
temporal constraints between different sets of intervals, and such disjunctive
constraints cannot be handled by a straightforward implementation of Allen's logic.

• A node represents any object which is not given a rigid designator, and in
particular, all event instances.  Nodes are a distinguished subset of the constants of
FOL.  Every e-graph includes a function type which maps every node to a unique
unary predicate.  In particular, every event node is mapped to a member of of HE.  An
e-graph has exactly one node of type End.

7.2.2. Roles of Event Types and of Nodes

The formulation of events described in Chapter 2 treats the roles of an event
instance as the unary functions which apply to the instance.  Because an event token
may be of several types, it is useful to define the subset of roles of an instance which
are relevant to each particular type of the token.  For example, a token :C may be of
types Change-Location and Ride-Train.   The roles of :C include destination and
train-number.   While both roles are relevant when one thinks of :C as a Ride-Train,
only the former makes sense when one thinks of :C as a Change-Location.

The association of roles with types is an important principle for organizing the
construction of an e-graph.  Events are abstracted in order to collapse the search
space.  Some of the roles of the more specialized types of the event are ignored in the
process.  Unless one "abstracts away" the roles in this manner, it is not possible to
have different alternatives for a single abstract event.  Consider the example above.
The step2 role of N2 is filled by N1.  When N2 is viewed abstractly as N6, the step2
role is eliminated.  This allows N6 to also abstract N3, which uses N1 to fill its step5
role.   The exact relationship between N6 and N1 is left open.

Not all roles of an event are components, of course.  Others include the agent
of the event, its time, the objects involved, and so on.  Any of these roles are also
candidates for being abstracted away.

Definitions.  The roles of an event type E are the unary functions which appear in
the decomposition axiom for any type which abstracts* E, and apply to the variable
which appears in the main antecedent of the axiom.  The component roles of an
event type are the roles of the event type which yield an event token when applied to
an event token.  The parameters of an event type are all the roles of the event type
which are not component roles.
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In an explanation graph, every node corresponding to an event token has a
unique associated type.  Therefore we can talk of the pairs of role functions and role
values of a node as follows.

Definitions.  A roleval of a node N is a pair (fr,v) such that

1.  fr is a role of type(N).

2.  v is a value, as defined above.

3. v=fr(N).

The known rolevals of N are simply the rolevals of N for which we can compute the
value v.  Sometimes we speak of a roleval without reference to a particular node,
meaning simply a (fr,v) pair.  The component and parameter rolevals of N are de-
fined in the obvious way.

7.2.3. Definition of an Explanation Graph

An explanation graph G = (Vr, Vt, Vn, Type, R, Rolevals, Alt), where:

Vr is the set of rigid designators.

Vt is the set of fuzzy temporal constraints.

Vn is the set of nodes.

Type is a function from nodes to event types.
Type: Vn ⇒ HE

R is the set of roles.

Rolevals is the known roleval relation, over node, roles, and values.
Rolevals �⊂ Vn x R x {Vr ∪ Vt  ∪ Vn}

Alt is the alternatives-for function, from nodes to sets of nodes.
Alt : Vn ⇒ 2Vn   
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An interpretation of a node n in G is the following sentence:

Interpretation(n) =
{Ei(n) | type(n)=Ei} ∧ 

∧{v=fr(n) ∧ S | (n,fr,v) ∈ Rolevals ∧ v∈Vn ∧ 
S = Interpretation(v)} ∧ 

∧{v=fr(n) | (n,fr,v) ∈ Rolevals ∧ v∈Vr } ∧ 

∧{fr(n) ∈ v  | (n,fr,v) ∈ Rolevals ∧ v∈Vt } ∧ 

∨{n=m ∧ S | m ∈ Alt(n) ∧ S = Interpretation(m)}

The sentence states that n is of the specified type; that it has the specified values as
roles; and that it must be equal to one of a set of other nodes.The interpretation of an
e-graph is the interpretation of its end node, with nodes replaced by existentially-
quantified variables.

Interpretation(G) =
∃ x1, … xk . Interpretation(h) θ

where
h ∈ Vn ∧ type(h)=End
θ = (n1/x1, … nk/xk)
{n1, … nk} = Vn

It is important to understand that an e-graph, unlike a lexical hierarchy, has
existential import.  It is used to represent the fact that some particular tokens are of
some types, and form components of other tokens.  A lexical hierarchy has no
existential import.  It only asserts that if there are any tokens of some type, then they
all must have certain properties.

The treatment of the alternative relation distinguishes e-graphs from previous
work that uses "semantic nets" to represent sentences.  Systems such as KL-1
[Brachman 85] can only represent conjunctions of atomic assertions.  There is no way
to assert that a particular entity is either  of type E1 or of type E2.  More recent work
on semantic nets, such as KRYPTON [Brachman, Fikes, & Levesque 85], has gained
the ability to make disjunctive assertions by adding a non-network component which
holds sentences containing arbitrary disjunctions and conjunctions.  Such systems use
a general-purpose theorem prover to make inferences from these assertions.  General
theorem proving is both theoretically and practically intractable, and little is known
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about controlling and focusing their power.  The special form of an e-graph, however,
lets us closely control specific kinds of reasoning with disjunctions.

7.3. Computing the Uses of an Event Type
As we have hinted above, the first stage of the recognition algorithm is to

prove that an observed event token is a component of an End event, by considering all
the possible uses of the observed event.  The Uses relation is roughly – but only
roughly – the inverse of the direct component relation.  Starting from an event of a
particular type – say, GetNewspaper(C1) – we consider all the uses of C1 as a
GetNewspaper – such as a step of BecomeInformed.  Then we consider the uses of C1
for types which abstract and specialize GetNewspaper.  So if GetPaper abstracts
GetNewspaper, we then consider the uses of C1 as a GetPaper, which differ from the
uses already considered – such as a step of BuildFire.  (As will be seen below, we'd
actually use different nodes for each abstraction and specialization of C1.)  Finally, it
may be necessary to consider uses of types which specialize the type of the original
observation.  To allow for the possibility that C1 could be an instance of
GetSleazyTabloid, we consider the use of the observed event as a step of
EnjoyVicariousTitillation.

7.3.1. Use Abstraction and Specialization

Just as one can talk of one type abstracting another, one can talk of abstraction
of the component relationship between types.  In the cooking world, the relationship
between MakeSauce and MakePastaDish abstracts the relationship between
MakeMarinara and MakeSpaghettiMarinara.  In order to explain an instance of
MakeMarinara, one considers MakeSpaghettiMarinara and MakeChickenMarinara.  It
is not necessary to consider the path from MakeMarinara to MakeSauce to
MakePastaDish, because that way of using the instance abstracts a more specific use
of the instance.

A use is a triple, (Ec, fr, Eu), and stands for the possibility that (some
instance) of Ec could fill the fr role of some instance of Eu.  For example, when
trying to explain event instance C1, this use would mean

∃ y . Eu(y) ∧ C1=fr(y) ∧ Ec(C1)

The abstraction relation between uses is defined as follows.
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Definition.  (Eac, fr, Eau) abstracts (Ec, fr, Eu) exactly when Eac abstracts Ec, and
Eau abstracts Eu.  When U1 is either the same as or abstracts U2, we say U1
abstracts* U2.  Specializes and specializes* are the inverse of abstracts and abstracts*
respectively.

7.3.2. The Uses and Direct Component Relations

It is sometimes necessary to consider uses of a type of which that type is not a
direct component.  Consider the following extension to the cooking hierarchy.

Make 
Pasta 
Dish

Make 
Noodles

Make 
Fettucini

Make 
Spaghetti

Make 
Noodles 

Primavera

Make 
Spaghetti 
Marinara

Make 
Fettucini 
Alfredo

Make 
Afredo 
Sauce

Make 
Marinara

s1

s2
s1

Make 
Primavera 
Sauce

s2
s2s1

figure 7.2:  Extended Cooking Hierarchy Detail

To explain an instance of MakeSpaghetti, one considers the use (MakeSpaghetti, s1,
MakeSpaghettiMarinara).  The use (MakeNoodles, s1, MakePastaDish) is not consid-
ered, because it abstracts the former use.  But then a possibility is unfairly ignored!
An event of type MakeSpaghetti could also be a component of an event of type Make-
NoodlesPrimavera, because that type does not further specify the type of its s1 role.
Therefore the set of Uses to consider should include (MakeSpaghetti, s1, Make-
NoodlesPrimavera).

The next section precisely specifies how Uses augments the set of direct com-
ponents, in order to guarantee that the recognition algorithms are correct.  The set
Uses needs only be computed once and for all, before  any observations are input.
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Therefore we need not be concerned with finding an efficient algorithm to compute
Uses; practically any exhaustive, off-line method is sufficient.

7.3.3. Definition of Uses

Given a component event type, Uses yields a very minimal set of use types
which describes those types whose instances could have a component of the given
type, but do not require the component to be of a particular subtype of the given
type.

A set of types describes another set of types if every member of the latter set
specializes* or abstracts* a member of the former set.  A set of types is minimal if no
member abstracts another member, and is very minimal if it also does not contain a
subset {E1, …, En} which forms an exhaustive set of specializations for some type
E0.  (A very minimal set should contain E0 instead.)  We define Uses in four steps, as
follows.

Uα = { (Ec, fr, Eu) |  ∃ Edu, Eac, Eau .
Ec is the fr direct component of Edu ∧ 
Eac abstracts* Ec ∧ 
Eac is the fr direct component of Eau ∧ 
Eau abstracts* Eu } 

Uβ = {(Ec, fr, Eu) | (Ec,fr,Eu) ∈ Uα ∧ 
H ∪ cl(H) º− ∀ x  . Eu(x) ⊃  ¬Ec(fr(x))}

Uχ = {(Ec, fr, Eu) | (Ec,fr,Eu) ∈ Uβ ∧ 
 ∀ Esu . Eu abstracts Esu ⊃ (Ec, fr, Esu) ∈ Uβ  }

Uses = {(Ec, fr, Eu) | (Ec,fr,Eu) ∈ Uχ ∧ 
 ¬∃ Eau . Eau abstracts Eu ∧ (Ec, fr, Eau) ∈ Uχ }

This rather complicated construction can be understood as follows.  We start by con-
sidering Ec which have some explicit direct uses.  Then we add uses from Ec to all the
types which directly use (in the same role) abstractions of Ec.  Next we add uses from
Ec to all types which specialize any of the previous uses.  (This is to catch uses like
(MakeSpaghetti, s1, MakeNoodlesPrimavera) above.)  This large set is Uα.  Next we
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throw out those uses which are not in fact possible, but arose in the specialization
step.  This yields Uβ.  The next two steps redescribe Uβ in simpler terms.  In Uχ we
throw out all the uses where the user type has some specializations which cannot have
components of type Ec.  Then in Uses we eliminate a set of uses if they exhaustively
specialize a use already under consideration.  This corresponds to making uses very
minimal, as described above.

7.3.4. Example

Following are the uses calculated at each stage for MakeNoodles and Make-
Spaghetti, using the extended hierarchy above.

Uα = { (MakeNoodles, s1, MakePastaDish)
(MakeNoodles, s1, MakeFettuciniAlfredo)
(MakeNoodles, s1, MakeSpaghettiMarinara)
(MakeNoodles, s1, MakeNoodlesPrimavera)
(MakeSpaghetti, s1, MakeSpaghettiMarinara)
(MakeSpaghetti, s1, MakePastaDish)
(MakeSpaghetti, s1, MakeFettuciniAlfredo)
(MakeSpaghetti, s1, MakeNoodlesPrimavera) }

Next, eliminate the impossible uses.

Uβ = { (MakeNoodles, s1, MakePastaDish)
(MakeNoodles, s1, MakeFettuciniAlfredo)
(MakeNoodles, s1, MakeSpaghettiMarinara)
(MakeNoodles, s1, MakeNoodlesPrimavera)
(MakeSpaghetti, s1, MakeSpaghettiMarinara)
(MakeSpaghetti, s1, MakePastaDish)
(MakeSpaghetti, s1, MakeNoodlesPrimavera) }

Throw out uses where some specializations of the user type are not uses.

Uχ = { (MakeNoodles, s1, MakePastaDish)
(MakeNoodles, s1, MakeFettuciniAlfredo)
(MakeNoodles, s1, MakeSpaghettiMarinara)
(MakeNoodles, s1, MakeNoodlesPrimavera)
(MakeSpaghetti, s1, MakeSpaghettiMarinara)
(MakeSpaghetti, s1, MakeNoodlesPrimavera) }

Simplify this set by eliminating sets of uses which exhaustively specialize another
use.
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Uses = { (MakeNoodles, s1, MakePastaDish)
(MakeSpaghetti, s1, MakeSpaghettiMarinara)
(MakeSpaghetti, s1, MakeNoodlesPrimavera) }

Thus from MakeNoodles one should consider the use MakePastaDish, while two
search paths start from MakeSpaghetti, one through MakeSpaghettiMarinara and the
other through MakeNoodlesPrimavera.

7.4. Constraint Checking
The algorithms need to check the various constraints which appear in the de-

composition axioms for the event types.  It is never necessary to prove that a
constraint actually holds; rather, one should fail to prove that the constraint is false.
As a side effect of constraint checking, the values of parameters are propagated to a
node from its components.  In Section 2.6.3, constraints were categorized as equality
constraints, temporal constraints, and preconditions and effects; the latter two jointly
called fact constraints.  Each kind of constraint is handled in a different manner.

7.4.1. Equality Constraints

An equality constraint usually equates a parameter of a node with a parameter of one
of its components.  An equality constraint fails if the values of the two items are
distinct rigid designators.  As a side effect, when a value is known for the parameter
of the component, but none for the parameter of the node, the value is assigned to the
parameter of the node.

7.4.2. Temporal Constraints

Rather than passing around precise values for time parameters, the implementation
passes fuzzy temporal constraints.  All unknown times are implicitly constrained by

(–_ +_  –_ +_)

A temporal constraint fails if a time parameter is assigned an empty  fuzzy constraint,
such as

(5 6 2 3)

There can be no time interval which starts between times 5 and 6, and ends between
times 2 and 3.  (Time doesn't run backwards!)  Corresponding to each binary temporal
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relation, such as Before or During, there an algebraic operation on fuzzy constraints,
with the following property:

Where T1, T2 are time intervals, and Z1,Z2 are fuzzy constraints:
T1 ∈ Z1 ∧ T2 ∈ Z2 ∧ T1 binary-op T2 ⊃

T1 ∈ Ftransitive(Z1, binary-op, Z2)

This algebra is described in Appendix D.  These rules are used to update the fuzzy
constraints assigned to the time parameters of the node under consideration.  The
appendix also defines the functions Fintersection and empty, which are used in the
algorithms.

7.4.3. Fact Constraints

Fact constraints are checked only if values are known for all the arguments of the
predicates in the constraint.  A limited theorem prover attempts to prove the negation
of the fact.  The constraint fails if the proof succeeds.  In order to check a fact of the
form

Never(T1, property)

the theorem prover attempts to show that there exists a time T2 over which the
property holds, and T1 must intersect T2, in order to satisfy their respective fuzzy
temporal constraints.

The implementation assumes that the general domain axioms HG are such as
to guarantee finite failure.

7.5. Overview of the Algorithms
The algorithms are presented in a structured pseudo-code, freely mixing

English and programming constructs in order to maximize clarity.  All functional
parameters are passed by value.  There are three basic algorithms:  explain-
observation, match-graphs, and group-observations.  We present an overview of
the algorithms, then the pseudo-code, and finally a more detailed description of their
operation.

7.5.1. Explain



103

103

The function call explain-observation(etype,edescr) builds an e-graph on the
basis of a single observation of an event of etype, which satisfies the role/value pairs
in edescr.  Two versions of the subroutine which checks for redundant search paths
are presented.  The first assumes that the abstraction hierarchy forms a tree.  The more
general version contains a slightly more complex test to avoid finding redundant
paths from a node to End.

Following is an example of the "multi-path problem" with multiple
inheritance.  Consider the following fragment of an event hierarchy.

A

B C

D

L

N

K
s1

s1

M

s1

figure 7.3:  Multiple Inheritance Hierarchy

Suppose the primary event to be explained is of type A.  Then one should consider
the use (C, s1, K) but not  the more general use (D, s1, L).  (Why?  Because of the ex-
haustiveness assumption, every L is either an M or a K.  M's must have components
of type N, and not of type A.  Every C is an A.  Therefore, from C it is safe to infer K.
The weaker conclusion of L is not an alternative conclusion.)  On the other hand, if
the primary node is of type B, then one should consider (D, s1, L) but not the more
specific (C, s1, K).  (Why?  Because the B could be an N or an A, so the best one can
do is conclude L.)  The potentially expensive test in the more general version of
redundant "looks back" at the primary node to see whether or not a different
abstraction path from the primary node could reach a more specific use than the one at
the current node.

An important feature of the algorithm is the test involving the consider-spec
flag.  In order to explain an event of etype, one must consider event types that (1) ab-
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stract etype; (2) specialize etype; and (3) abstract types which specialize etype.  We
must not consider types that specialize types that abstract etype – because this
includes all of HE.

7.5.2. Match

The function call match-graphs(graph1,graph2) builds a new graph which
equates the End nodes of graph1 and graph2.  The match algorithm assumes that there
exists either no or exactly one type which is the "greatest lower bound" of any pair of
elements of HE.  Formally:

E1 and E2 are compatible ⊃
∃ E3 ∈ HE . E1 abstracts* E3 ∧ E2 abstracts* E3 ∧ 

∀ E4 . E1 abstracts* E4 ∧ E1 abstracts* E4 ⊃
E3 abstracts* E4

A technical term for this is that HE is a lower semi-lattice.  The glb of non-compatible
types is by definition ∅.

The key feature of match-graphs is the use of a cache to store matches
between nodes.  Because e-graphs are digraphs, rather than trees, it is possible for the
same pair of nodes to be visited more than once in the matching process.  The node
created the first time the pair is visited is used as the result of any subsequent match
of the pair.  Without this feature, match-graphs would multiply the input digraphs into
a tree, possibly causing an exponential increase in the size of the result over the size
of the inputs.

7.5.3. Group

The function group-observations continually inputs observations and groups
them into sets to be accounted for by particular e-graphs.   The function minimum-
Hypoths is called to retrieve a disjunctive set of current hypotheses, each of which is
a conjunctive set of e-graphs which accounts for all of the observations, using as few
End events as possible.

There are three versions of this algorithm.  The Non-Dichronic algorithm re-
turns the same results regardless of the order in which the observations are input, and
computes conclusions mc-entailed by the inputs.  The Incremental Minimization
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and Sticky versions correspond to the incremental theories of recognition discussed
in Chapter 5.  The Incremental Minimization algorithm only increases the number
of different End events under consideration when it has to, and retains all previous
conclusions.  It implements the imc-entailment operator.  The Sticky algorithm tries
to explain each observation by making it part of the most recently invoked End event.

7.6. Pseudo-Code

7.6.1. Utility Functions
_________________________________________________________

Utility Functions
on Nodes of Explanation Graphs

function type(node)
/*  most  specific type assigned to the node */

function roleval(node, role)
/*  the value of role(node) */

function alternatives-for(node)
/* a set {n1, n2, ..., nj } such that
node=n1 ∨node=n2 ∨ ... ∨ node=nj  */

function status(node)
/* initially True for all nodes, set to False when the alternative con-
taining the node is ruled out */

_________________________________________________________

7.6.2. Explain-Observation
_________________________________________________________

Explain-Observation

global egraph /* stores the explanation graph built by explain */
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/* explain-observation
etype : type of observed event
edescr : role/value pairs of observed event

returns
egraph : explanation graph rooted at End-node-of(graph)

*/
function explain-observation(etype, edescr) is

initialize egraph
explain(etype, edescr, {etype}, True, etype)
return egraph

end build-explanation-graph

/* explain
etype : type of event to be explained
edescr : list of (role value) pairs which describe the event
visited : set of event types considered so far
consider-spec : if true, then consider specializations of etype
primary : the type at which search to explain this event

 instance began
returns

node : represents event token of etype
pathToEndFound : true if successfully explained event
allVisited : visited augmented with types considered which

abstract etype
*/
function explain(etype, edescr, visited, consider-spec, primary) is

explained := False /* need to find a path to End */
visited := visited ∪ {etype}
/* Merge search paths if possible */
if egraph has a node n of etype which exactly matches edescr then

return (n, status(n), visited) endif
/* Can't merge, must consider a new node */
create a new node n of etype which satisfies edescr in egraph
if etype=End then return (n, True, visited) endif
propagate equality, temporal, and fact constraints at n
if constraints violated then

status(n) := False
return (n, False, visited) endif

/*  Consider direct Uses of etype */
forall (etype, r, utype) ∈ Uses

 /* eliminate unnecessary Uses */
if ¬redundant(etype, r, utype, visited, primary) then

(–,foundpath,–) := explain(utype, {(r,n)}, ∅, True, utype)
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/* the r role of the event must be n */
explained := foundpath or explained

endif
endfor
/*  Consider abstractions of etype */
forall atype ∈ direct-abstractions(etype)

if atype ∉ visited then
/*  eliminate unnecessary abstractions */

let adescr be the role/value pairs computed for n,
 limited to the non-step roles defined for atype

(an,foundpath,visited) :=
 explain(atype, adescr, visited, False, primary)

add n as an alternative for an
explained := foundpath or explained

endif
endif
/*  Consider specializations of etype */
if consider-spec then

 /* don't abstract up and then specialize back down */
forall stype ∈ direct-specializations(etype)

(–,foundpath,–) :=
explain(stype, edescr, visited, True, primary)

explained := foundpath or explained
endfor

endif
status(n) := explained
return (n, explained, visited)

end explain

__________________________________________________________

Check for Redundant Paths
(called by Explain)

/*  Tree Version */
function redundant(etype, r, utype, visited, primary) is

return (etype, r, utype) abstracts or specializes a use
for  some member of visited

end redundant

/*  Multiple-Inheritance Version */
function redundant(etype, r, utype, visited, primary) is
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return
((etype, r, utype) abstracts a use for a type which

abstracts*  primary) ∨ 
((etype, r, utype) specializes a use for a type which

specializes*  primary) ∨ 
(etype does not abstract* or specialize* primary ∧ 

(etype, r, utype) specializes a use for a type which
abstracts  primary) ∨ 

(etype does not abstract* or specialize* primary ∧ 
(etype, r, utype) abstracts a use for a member of

visited ∧ 
(etype, r, utype) does not specialize a use for type

which abstracts primary) 
end redundant

__________________________________________________________

7.6.3. Match-Graphs
__________________________________________________________

Match-Graphs

global mgraph /* stores the graph created by match */

/* match-graphs
graph1, graph2 : graphs to be matched

returns
graph3 :  represents equating End nodes of graphs 1 and 2

and propagating equality
succeeded : True if match succeeded, false otherwise

*/

function match-graphs(graph1, graph2) is
initialize mgraph
(–,succeeded ) := match(End-node-of(graph1), End-node-of(graph2))
return (mgraph, succeeded )

end match-graphs

hash-table previous-match /* cache for results of each call to match */
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/* match
n1 , n2 : values to be matched (either  nodes, time intervals, or

fuzzy temporal constraints)
returns

n3 : value which represents the result of the match
succeeded : if true, then n1 and n2 could be equal

*/
function match(n1, n2) is

if n1 and n2 are rigid designators then
return (n1, n1=n2)

elseif n1 and n2 are fuzzy temporal constraints then
return ( Fintersection(n1,n2), ¬empty(Fintersection(n1,n2)) )

else /* n1 and n2 are nodes */
/* if n1 and n2 have already been matched, reuse that result */
n3 := previous-match(n1,n2)
if n3 ≠ ∅ then return (n3, status(n3)) endif
/* check that types of n1 and n2 are compatible */
n3type := greatest lower bound of {type(n1), type(n2)}
if n3type = ∅  then return (–,False) endif
create new node n3 of n3type in mgraph
/* add all known role/values of n1 and n2 to n3, matching

identical roles */
forall roles r defined for n3type

v1 := roleval(n1,r)
v2 := roleval(n2,r)
if either v1 or v2 is defined then

if v1 is defined but not v2 then
(v3, okay) := match(v1,v1)

elseif v2 is defined but not v1 then
(v3, okay) := match(v2,v2)

elseif
(v3, okay) := match(v1,v2)

endif
if ¬okay then return (n3, False) endif
add v3 as the r role of n3

endif
endfor
check equality, temporal, and fact constraints on n3
if constraints violated then

status(n3) := False
return (n3, False) endif

/* match alternatives for each node */
if either n1 or n2 has an alternative then
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for a1 ∈ alternatives-for(n1)
(or a1=n1 if no alternatives)

for a2 ∈ alternatives-for(n2)
(or a2=n2 if no alternatives)

(a3, okay) := match(a1, a2)
if okay then

add match(a1,a2) as a alternative for
n3

endif
endfor

endfor
endif
if there were alternatives of n1 or n2, but none matched then

return (n3,False)
else return (n3,True) endif

endif
end match.

_________________________________________________________

7.6.4. Group Observations

7.6.4.1. Non-Dichronic Version
_________________________________________________________

Group-Observations
Non-Dichronic Version

global Hypoths
/*  A set (disjunction) of hypotheses, each a set (conjunction) of ex-
planation graphs.  Each hypothesis corresponds to one way of
grouping the observations.  Different hypotheses may have different
cardinalities.  */

function minimum-Hypoths is
smallest := min { card(hypo) |  hypo ∈ Hypoths}
return { hypo | hypo ∈ Hypoths ∧ card(hypo)=smallest }

end minimum-Hypoths

procedure group-observations is
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Hypoths := {∅}
while more observations

obtain observation (etype, edescr)
obs-graph := explain-observation(etype, edescr)
forall hypo ∈ Hypoths

remove hypo from Hypoths
add hypo ∪ obs-graph to Hypoths
forall g ∈ hypo

(new-g, okay) := match-graphs(obs-graph, g)
if okay then

add (hypo – {g}) ∪ new-g to Hypoths
endif

endfor
endfor

endwhile
end group-observations

__________________________________________________________

7.6.4.2. Incremental Minimization Version
_________________________________________________________

Group-Observations
Incremental Minimization Version

global Hypoths
/*  A set (disjunction) of hypotheses, each a set (conjunction) of ex-
planation graphs.  Each hypothesis corresponds to one way of
grouping the observations.   All hypotheses have the same cardinality,
corresponding to the minimum number of End events */

function minimum-Hypoths is
return Hypoths

end minimum-Hypoths

procedure group-observations is
Hypoths := {∅}
while more observations

obtain observation (etype, edescr)
obs-graph := explain-observation(etype, edescr)
old-hypoths := Hypoths
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forall hypo ∈ Hypoths
remove hypo from Hypoths
forall g ∈ hypo

(new-g, okay) := match-graphs(obs-graph, g)
if okay then

add (hypo – {g}) ∪ new-g to Hypoths
endif

endfor
endfor
if Hypoths=∅ then

forall hypo ∈ Hypoths
add obs-graph to hypo

endfor
endif

endwhile
end group-observations

___________________________________________________________

7.6.4.3. Sticky Version
___________________________________________________________

Group-Observations
Sticky Version

global hypo
/*   An ordered list of e-graphs, from most recent to least recent, repre-
senting a single hypothesis */

function minimum-Hypoths is
return {hypo}

end minimum-Hypoths

procedure group-observations is
hypo := NIL
while more observations

obtain observation (etype, edescr)
obs-graph := explain-observation(etype, edescr)
block update

foreach g ∈ hypo in order
(new-g, okay) := match-graphs(obs-graph, g)
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if okay then
hypo := cons(new-g,  remove(g, hypo))
exit block update

endif
endfor
hypo := cons(obs-graph, hypo)

endblock update
endwhile

end group-observations

_________________________________________________________

7.7. Description of Operation
The following section steps through and explains the operation of the algo-

rithms.  The transcripts in Appendix E contain detailed traces of Explain and Match
on many of the specific examples discussed in this thesis.

7.7.1. Explain

• Check whether the graph under construction already contains a node of etype which
exactly matches edescr, and contains no additional parameters.  If this is the case,
then the graph merges at this point.  Consider the e-graph at the beginning of this
chapter.  Suppose the left-hand side of the graph has been constructed (nodes N1, N2,
N4, N6, and N7).  Search is proceeding along the right-hand part of the graph,
through N3.  The invocation of explain which created MakeMeatDish(N5) is
considering abstractions of MakeMeatDish (see below), and recursively calls explain
with type PrepareMeal.  The specific call would be:

explain( PrepareMeal, {…}, {MakeMeatDish}, False, MakeMeatDish )

This description exactly matches previously-created node N6, which is returned.
Then N5 is made an alternative for N6.  Thus the left path through N2 and N4 merges
with the right path through N3 and N5.  This kind of merging can prevent
combinatorial growth in the size of the graph.

•  Create a new node of type etype, and link all the role/value pairs in edescr to it.

•  Check whether the type of the newly-created node is End.  If so, then no further ex-
planation is possible, and so return.
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•  Propagate and check constraints.  Suppose this is the invocation of explain which
created MakeSpaghettiMarinara(N2).  Edescr is {(step2 N1)}, meaning that compo-
nent step2 of N2 is N1.  The equality constraints say that the agent of any
MakeSpaghettiMarinara must equal the agent of its MakeMarinara step.  (This con-
straint is inherited from the more general one given for MakePastaDish.)  If initially
(N1 agent Joe) appears in the graph, after this step (N2 agent Joe) also appears.

Fuzzy time constraints are also propagated.  N2 is constrained to occur over an
interval which contains the time of N1.  Suppose the graph initially contains (N1 time
(4 5 6 7)).   After this step, it also contains (N2 time (–_ 5 6 +_)).

This step can also eliminate nodes, marking them as failed.  The agent of every spe-
cialization of MakePastaDish is constrained to be dexterous.  Suppose the general
world knowledge base contains the assertion ¬Dexterous(Joe).  Then this step fails
for this invocation, and explain sets the status of N2 to false and returns.

•   Consider Uses of etype.  The calculation of the set of Uses is described in Section
7.3.3.  If etype is MakeMarinara, then explain is recursively invoked with etypes of
MakeSpaghettiMarinara and MakeChickenMarinara.  The call to redundant
eliminates uses which have already been considered by alternative paths.  Examples
follow.

•  Explain etype by considering its abstractions.  The node becomes an alternative-
for its abstractions.  Suppose the current invocation has created MakePastaDish(N4).
This step calls

explain( PrepareMeal, {(agent Joe) (time (–_ 5 6 +_))},
{MakePastaDish},  False, MakePastaDish )

which returns N6.

Not all abstractions lead to End; some are pruned, and don't appear in the final graph.
Consider the invocation which created MakeMarinara(N1).  It calls explain for Make-
Sauce.  The only Use for MakeSauce, however, is (MakeSauce, step2, MakePas-
taDish); but that use is eliminated by the redundant test.  Therefore no node of type
MakeSauce appears in the final graph.

•  Try to explain etype by considering specializations of etype.  This step is not per-
formed if etype was reached by abstracting some other type, rather than as a Use.
This always occurs in the example.  But suppose explain were initially invoked with
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etype equal to MakeSauce.  Then the specialization MakeMarinara is considered.  In
the recursive invocation of explain, the Uses of MakeMarinara are examined.  The
use (MakeMarinara, step2, MakeSpaghettiMarinara) is eliminated by redundant,
because it specializes (MakeSauce, step2, MakePastaDish).  The use (MakeMarinara,
step5, MakeChickenMarinara), however, does lead to a path to End.

•  If any path to End was found, the status of the node is set to True, and otherwise to
False.  Finally the name of the node and its status are returned.

7.7.2. Match

The following diagram shows two e-graphs, the first built from an observation of
MakeMarinara, and the second from an observation of MakeNoodles.  Match is ini-
tially invoked on the End nodes of the two graphs:

match(N7, N11)

and returns N12, the End node of the combined graph.  The following section steps
through the operation of Match.
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figure 7.4:  E-Graphs for MakeMarinara, MakeNoodles, and their Match
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• If the objects to be matched are rigid designators, they must be lexically identical.

• If the objects are fuzzy temporal constraints, then take their intersection.  Suppose
n1 is (–_ 5 6 +_), and n2 is (–_ 8 7 +_).  Then match returns (–_ 5 7 +_).

• Check whether n1 and n2 have already been matched, and if so, reuse that value.
Suppose that the first e-graph in the diagram above were matched against an e-graph
of identical shape; for example, there were two observations of MakeMarinara, and
they may have been identical.  During the match down the left hand side of the
graphs, through N4 and N2, MakeMarinara(N1) would match against the
MakeMarinara node in the second graph (say, N1'), resulting in some final node, say
N1''.  Then the right-hand side of the graphs would match, through N5 and N3.  N1
would match against N1' a second time, and the value N1'' would be used again.  This
would retain the shape of the digraph, and prevent it from being multiplied out into a
tree.

•  Add a new node to the graph, n3, to represent the result of the match, which is of
the greatest lower bound type of n1 and n2.  Matching MakeSpaghettiMarinara(N2)
against MakePastaDish(N9) results in MakeSpaghettiMarinara(N15).  The match fails
if the types are not compatible.  Thus MakeMeatDish(N5) fails to match against
MakePastaDish(N9)

•  Match the roles of n1 and n2.  If a role value is defined for one node but not the
other, match the role against itself in order to simply copy the structure into the result-
ing graph.  This what happens when N2 matches N9, yielding N15.  The new node
gets both the step2 role value from N2 (a copy of N1, which is N17) and the step1
role value from N9 (a copy of N8, which is N16).  If N2 had the role step1 defined,
that value would have had to match against N8.

Suppose both End nodes, N7 and N11, have the agent roles defined.  This step checks
that the agents are the same.

• Check and propagate the constraints on n3.  New constraint violations may be de-
tected at this point because more of the roles of the nodes are filled in.  Violations of
temporal orderings between steps are detected at this point.  The transcripts contain an
example where an e-graph based on Boil fails to match against one based on
MakeNoodles, because the Boil occurred before the MakeNoodles.

•  Try matching every alternative for n1 against every alternative for n2.  The
successful matches are alternatives for n3.  If one of the nodes has some alternatives,
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but the other does not, then match the alternatives for the former against the latter
directly.  This occurs in the example above.  MakePastaDish(N4) matches against
MakePastaDish(N9).  N4 has the alternative N2, but N9 has none.  Therefore
MakeSpaghettiMarinara(N2) matches against MakePastaDish(N9) as well.

If there were some alternatives but all matches failed, then n3 fails as well.

•  Return n3 and whether or not the match succeeded.

7.7.3. Group

The various versions of group-observations are considerably simpler than the pre-
vious algorithms.

The Non-Dichronic Version maintains a set of all possible groupings of the obser-
vations.  It functions as follows:

• Observe an event of etype satisfying edescr.

• Generate obs-graph by explain.

• Conjoin obs-graph with each hypothesis consisting of a set of e-
graphs.  Thus obs-graph is considered to be unrelated to the
previous observations.

•  Try to match obs-graph with each e-graph in each hypothesis.
Thus obs-graph is considered to be related to a previous ob-
servation.

• The current (mc-entailed) conclusion corresponds to the disjunction
of all hypotheses of minimum size.

The Incremental Minimization Version works as follows:

• Observe an event of etype satisfying edescr.

• Generate obs-graph by explain.
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•  Try to match obs-graph with each e-graph in each hypothesis.
Thus obs-graph is considered to be related to a previous ob-
servation.  Each successful match leads to a new hypothesis.

•  If obs-graph cannot be matched with previous e-graphs, then con-
join  obs-graph with each hypothesis.

• The current (imc-entailed) conclusion corresponds to the disjunction
of all hypotheses, all of which are of same size.

Finally, the Sticky Version works as follows:

• Observe an event of etype satisfying edescr.

• Generate obs-graph by explain.

•  Try to match obs-graph with each e-graph in the (single) hypothe-
sis, in chronological order, from most to least recent.  As soon
as a match succeeds, update the hypothesis, removing the old
matching e-graph, and adding the result of the match as the
most recent e-graph.

•  If obs-graph cannot be matched with any previous e-graphs, then
conjoin  obs-graph with the hypothesis, as the most recent e-
graph.

• The current conclusion corresponds to the single hypotheses, a con-
junction of e-graphs.

7.8. Completeness & Correctness
The necessarily limited nature of the constraint checking performed by the

algorithms, together with the open-ended nature of the plan recognition problem,
makes it impossible to guarantee that the algorithms will arrive at the strongest
conclusions justified by the theory of mc-entailment.  The algorithms are, however,
correct:  the interpretation of their outputs holds in all minimum-covering models.
This most easily seen by noting that the algorithms implement the proof rules
discussed in Chapters 3 and 4.
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The key to the correctness of explain is the fact that the algorithm searches
from the input event type to every possible use of events of that type, as specified by
Theorem 3.11.  (A precise statement and proof of this fact, which demonstrates that
the set Uses and the redundant check are properly formulated, appears in Appendix
F.)  Each path leads to a different disjunctive conclusion, which may be collapsed
with others via the alternative-for arcs.

The match algorithm simply propagates an equality assertion between terms.
If two terms n1 and n2 are equal, then the value of a function applied to the first is the
same as the value of that function applied to the second.  If n1 is equal to one of a set
of alternatives, and n2 is equal to one of another set of alternatives, then certainly at
least one alternative from the first set is equal to some alternative from the second.
The Disjointedness Assumptions justify concluding that n1 and n2 are not equal if
they are not of compatible types.

7.9. Complexity
One straightforward measure of the complexity of the algorithms is the size of

largest data structure possibly produced.  A more detailed analysis would measure
time complexity as well; but since the algorithms visit each node a fixed number of
times, we can take space complexity as a rough measure of time complexity as well.
(A possible exception is the test to handle the multi-path problem in the multiple-
inheritance version of explain-observation.  The cost of the best algorithm to perform
this test is not obvious.)

The size of an e-graph, |G|, is the number of nodes in G.   The expression
"Algorithm X is of O(f(n))" in the following sections means that the largest data
structure constructed by X on input n is no larger than c*f(n), for some fixed constant
c.  The actual worst-case complexity of X may, of course, be smaller than f(n).  The
expression "Algorithm X is no better than O(f(n))" means that there is no g such that
X is of O(g(n)) and g is better than f by more than a constant factor; that is, it is not
the case that

∀ k > 0 . ∃ m  . ∀ n . n > m ⊃ g(n) < k*f(n)

7.9.1. Explain
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Suppose that the events described by H contain no parameters.  Then explain-
observation is of O(|HE|), since the worst case would lead to an exhaustive search of
all of H.   But suppose explain-observation did not merge search paths at abstraction
points.  Then the algorithm would be no better than O(2|HE|), because an event can
have several different components of the same type.  The figure below is a case where
such combinatorial blowup could occur.

C

D

End

s1 s2

B

s1 s2

A

s1 s2

figure 7.5:  Combinatorially Explosive Hierarchy

This example shows the importance of maintaining disjunctions within each e-graph,
using the alternative-for relation, rather than creating separate databases for each
alternative.

If parameters (such as agent, time, etc.) do appear, the search space will be
larger.  During the construction of the e-graph, however, very few of these roles will
have known values.  Thus the first step in explain will very frequently find a similar
node and cut off search.

7.9.2. Match

Calling match-graphs(G1,G2) frequently returns a graph which is smaller than
either G1 or G2.  Unfortunately, sometimes the resulting graph can be larger.  This
occurs when two nodes are matched which have several alternatives, all of which are
mutually compatible.  Therefore the worst case complexity of match-graphs(G1,G2)
is O(|G1|*|G2|).
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There cannot be more than |G1|*|G2| + |G1| + |G2| nodes in the result, because
every pair of nodes always matches to the same node.  The last two addends enter in
because a node may also match against itself.  Without the use of the cache of
previous results, performance could be much worse.  The resulting graph would
always be a tree, and the algorithm would be no better than O(2|G1|*|G2|).

7.9.3. Group

Some of the most intimidating complexity results arise from the group-
observations algorithm.  The non-dichronic algorithm finds all consistent partitions of
the set of observations. In the worst case, all partitions are possible – any subset of the
observed events could be part of the same End event.  Then Hypoths will contain B(n)
hypotheses, where n is the number of observations.  There is no simple closed form
for B(n), but it is easy to show that
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nn
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nn

«ª
©

»º
¹n
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 ≈ 
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so that group-observations could contain at least 2n hypotheses.

Together with the worst-case estimates for explain and match, Hypoths could
total more than O(2n|HE|n) nodes.  Of course, if all the observations could be part of
the same End event, then minimum-hypos will return a single hypothesis consisting
of a single e-graph which incorporates all the observations.

The basic dichronic algorithm does much better in this case.  If all the
observed events could be part of the same hypothesis, then Hypoths will be of size 1.
This worst-case size of this hypothesis is O(|HE|n).  This may not seem like much of
an improvement, but remember that the |HE|n is a very unlikely upper bound – it
would only hold if all the observations were not telling us anything definite! – while
the 2n factor in the non-dichronic algorithm would be accurate in the common case of
all the observations being possibly related.

Once several End events are required to account for all the observations, how-
ever, the dichronic algorithm could fall prey to the same sort of combinatorial explo-
sion.  Thus a truly practical system may need to resort to the sticky dichronic
algorithm.  Because it develops a single hypothesis, the sticky algorithm has an
absolute upper bound of O(|HE|n) (and will usually do much better).  Sometimes the



123

123

sticky algorithm will fail to find the correct – or any – interpretation of the data.  An
endless number of more or less general and more or less efficient algorithms lie
between the non-dichronic and sticky versions.

7.10. Transcripts
The explain-observation and match-graphs algorithms have been imple-

mented in Common Lisp, and appear practical in small domains.  The recognition
problems discussed in this thesis all run in a few seconds.  Appendix E contains tran-
scripts of the programs in operation.
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Chapter 8
Conclusions

8.1 The Three Levels
[Marr 82] argues that research in A.I. should analyze each problem at three

distinct levels.  The computational theory  states the goal of the computation, why it
is appropriate, and provides an abstract mapping from the input information to the
output.  The level of representation and algorithms provides a particular
representation for the input and output, and an algorithm for the transformation.  The
hardware implementation  shows how the algorithm can be realized physically.  Quite
often the computational level is overlooked; the result, as Marr demonstrates with
many examples from the study of vision, are algorithms which do not actually solve
the intended problem, and are based on incorrect assumptions.  Neglecting the
algorithmic theory is dangerous in another way:  one can develop elegant formal
theories which would require infinite time and resources to implement.

Our framework includes model, proof, and algorithmic theories.  How do
these relate to the three levels?  The model theory provides a mapping from models of
the input to models of the conclusions; thus it is a pure information to information
mapping, a computational level theory of the most abstract kind.  The proof theory is
a computational theory of a more concrete kind.  It provides a non-deterministic
procedure (namely, the generation of the non-monotonic assumptions, followed by
the application of deductive rules) that transforms a first-order representation of the
input to that of the output.   Thus the proof theory stands between Marr's
computational and algorithmic levels.  Finally our algorithmic theory fills the
algorithmic level, by providing a deterministic procedure which may be directly
programmed on a computer.  We have nothing to say about the hardware level, how
anything like our theory could be realized in a brain.  Practically all work that
suggests how high-level inference could be performed by neurons is fueled mostly by
(often ingenious) speculation; but see [Feldman 81] for some proposals in this
direction.

Having completed this thesis, there is no doubt in my mind that the most diffi-
cult task was to define the computational theory at the most abstract level.  Once the
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rather amorphous problem of "plan recognition" was tied down, work could proceed
in earnest.  As the literature review in Chapter 1 revealed, similar proposals and
heuristics for plan recognition problems have been hashed over for years, since the
early work of Schmidt and Genesereth.  The minimal model construct we've
developed suggests what some of these heuristics are heuristics for.  The lack of a
clear problem statement is no doubt one of the reasons for the stagnation in work in
story understanding in the past decade.

8.2 Applicability
Our framework makes explicit the assumptions of Exhaustiveness, Disjointed-

ness, and Component/Use Completeness which underlie our theory of plan recogni-
tion, as well as most previous work.  These assumptions simplify the problem, and re-
strict its applicability.  Do these assumptions limit our work to toy micro-worlds?17

Every day new kinds of events occur, and yet they do not baffle us.  An intelli-
gent agent cannot rely only on a recognition system; it must contain a learning
component as well.  Earlier we suggested that it might be appropriate to invoke the
learning module when recognition failed.  The ability of our framework to handle
levels of abstraction provides a crucial feature needed for learning.  For example, we
might be able to conclude that  the agent is cooking some kind of pasta dish, even if
we can rule out any of the particular  pasta dishes in our library.  It may be possible
to modify the minimal model construction so that the Exhaustiveness assumption is
weakened, and thus allow the recognition and learning modules to be integrated.

None the less, much of what a plan recognition system must handle is routine.
A more serious problem is that of recognizing erroneous plans.  Our framework as-
sumes all plans are internally consistent, and that all acts are purposeful.  Yet real
people make frequently make planning errors and change their minds in midcourse.

One class of errors can be handled without significant change to our frame-
work.  Suppose every  basic event type is given two new specializations, one of which
also specializes a new type called Error.  The diagram below illustrates how a
hierarchy would be transformed.

                                                
17[Dreyfus 85] argues that this criticism applies to work in A.I. in general.
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Then each observed event could either be an End event on its own by being an Error,
or it could be part of an End event in a correct plan from the original hierarchy.
Minimizing the number of End events prefers interpretations in which Errors do not
occur; but observations sequences which must be part of erroneous plans can still be
recognized.

8.3 Generality & Extensibility
Despite the limitations outlined above, the generality of our framework must

be stressed.  We do not assume that there is a single plan underway, which can be
uniquely identified from the first input.  We do not assume that the sequence of obser-
vations is complete.18   Finally, we do not  assume that all the steps in a plan are
linearly ordered.  Indeed, we know of no other implemented plan recognition system
which handles arbitrary temporal relations between steps.

                                                
18Completeness of the observations is a nice property to exploit when it is available.  [Segre 86] has
built a plan recognition system for use in programming a robot arm.  The operator guides the arm
manually, and the system recognizes what plans are being performed.  No kind of non-deductive
inference is needed:  because every step of the plan is input, the fact that the plan occurs logically
follows.
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The logical basis for the system makes it clear what conclusions should be
reached on the basis of quantified and disjunctive information.  Section 2.7 showed
how plans involving conditional actions could be represented by event hierarchies.
Previous plan recognition systems did not handle any of these situations.

The generality of the system suggests that it may be extended in various ways
in a straightforward manner.  An important one for plan recognition is the ability to
deal with plans containing iteration and recursion.   For example, a plan to pick up all
the blue blocks might be encoded as follows:

∀x . pickup-blues(x) ⊃ ∀y. block(y) ∧ blue(y) ⊃ 
pickup(s(y,x)) ∧ object(s(y,x))=y

That is, if an instance of picking up blue blocks occurs, then for every block that is
blue, an instance of pickup occurs with that block as its object.  We have not yet
investigated whether this extension to the form of the event hierarchy requires
modification in the model theory.  Another area for future work is to extend our
notion of an event hierarchy to include hierarchies with exceptions [Touretzky 84].

Finally we need to consider principles other than Occam's Razor for determin-
ing the class of preferred interpretations.  Rather than ordering models during the
minimization process by the number of End events, one may wish to include other
factors, such as qualitative likelihoods of various event types.  It remains to be seen
how far the general framework can be pushed, or if other, more quantitative measures
belong in a separate theory, which applies to the conclusions of our system.

8.4 Two Unresolved Issues
After reviewing the strong and weak points of our work, a couple of

unresolved issues remain.  The first is the question of scale-up.  As discussed in
Chapter 7, the worst-case behavior of our recognition algorithms can be bad, although
proper structuring of the hierarchy greatly reduces search.  How much of a problem
will this be in more realistically-sized knowledge bases?  Experience in creating and
examining the structure of larger domains is necessary.

A more philosophical problem is the whole issue of what serves as primitive
input to the recognition system.  Throughout this thesis we've assumed that arbitrary
high-level descriptions of events are simply presented to the recognizer.  This
assumption is reasonable in many domains, such as understanding written stories, or
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observing the words typed by a computer operator at a terminal.  But a real plan
recognizer – a person – doesn't always get his or her input in this way.  How are
visual impressions of simple bodily motions – John is moving his hands in such and
such a manner – translate into the impression that John is rolling out dough to make
pasta?  There is a great deal of work in low-level perception, and a great deal in high
level recognition – including this thesis.  The semantic gap between the output of the
low-level processes and the high-level inference engines remains wide, and few have
ventured to cross it.
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Appendix A
Chapter 3 Proofs

Theorem 3.1 (Exhaustiveness)

Suppose {E1, E2, … , En} are all the predicates directly abstracted by E0 in HA.

Then the statement:
∀x . E0(x) ⊃ (E1(x) ∨ E2(x) ∨ … ∨ En(x))

is true in all models of HA which are closed under specialization.  The statement is

also true in all A-closed models of H.

Proof

Let M1 be a model of HA in which the statement does not hold.  We prove that M1
cannot be closed under specialization.

For the statement to be false in M1, there must be some :C such that
E0(x) ∧ ¬E1(x) ∧ … ∧ ¬En(x)

is true in M1{x/:C}.  Define M2 by
Domain(M2) = Domain(M1)
M2[Z] = M1[Z] for Z ≠ E0
M2[E0] = M1[E0] – {:C}

That is, M2 is the same as M1, except that :C ∉ M2[E0].

We claim that M2 is a model of HA.  Every axiom that does not contain E0 is true in
M1, and therefore receives the same valuation in M2.  So consider axioms that
contain E0.  Axioms of the form:

∀x . E0(x) ⊃ Ei(x) i ≠ 0

are false only if there is a :D such that
:D ∈ M2[E0] ∧ :D ∉ M2[Ei]
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But we know that
:D ∈ M2[E0] ⇒ 
:D ∈ M1[E0] ⇒ 
:D ∈ M1[Ei] ⇒ 
:D ∈ M2[Ei]

which is a contradiction.  Therefore there can be no such :D, and the axiom holds in
M2.

The only other axioms containing E0 are of the form
∀x . Ei(x) ⊃ E0(x) 1 ≤ i ≤ n

Again, this fails in M2 if there is a :D such that
:D ∈ M2[Ei] ∧ :D ∉ M2[E0]

If :D ≠ :C, then
:D ∈ M2[Ei] ⇒ 
:D ∈ M1[Ei] ⇒ 
:D ∈ M1[E0] ⇒ 
:D ∈ M2[E0]

which is a contradiction.  Finally, if :D = :C, then, since :C ∉ M1[Ei],
:D ∉ M1[Ei] ⇒ 
:D ∉ M2[Ei]

which also is a contradiction.  Therefore there can be no such :D.  So M2 is a model
of HA.

Furthermore, M1 and M2 agree on all terms and predicates outside of HE–HEB.  (E0
cannot be a basic event type.)  M2 defeats M1's candidacy for minimality in HE–
HEB.  Therefore the statement in Theorem 3.1 must hold in all models closed under

specialization.  Since A-closed models are a subset of those closed under
specialization, the statement also holds in all A-closed models.

Q.E.D.

Theorem 3.2



136

136

Let EXA be the set of all statements which instantiate Theorem 3.1 for a particular H.
If M1 is a model of HA ∪ EXA such that :C ∈ M1[E0], then there is a basic event
type Eb ∈ HEB such that :C ∈ M1[Eb] and E0 abstracts* Eb.

Proof

By induction.  Define a partial ordering over HE by Ej < Ek iff Ek abstracts Ej.
Suppose E0 ∈ HEB.  Then E0 abstracts* E0.  Otherwise, suppose the lemma holds
for all Ei < E0.  Since

∀x . E0(x) ⊃ (E1(x) ∨ E2(x) ∨ … ∨ En(x))
and :C ∈ M1[E0], it must the case that

:C ∈ M1[E1] ∨ … ∨ :C ∈ M1[En]
WLG, suppose :C ∈ M1[E1].  Then there is an Eb such that E1 abstracts* Eb and
:C ∈ M1[Eb].  Since E0 abstracts E1, it also abstracts* Eb.

Q.E.D.

Theorem 3.3

Every event in a model closed under specialization is of at least one basic type.  That
is, if M1 is a model of HA closed under specialization such that :C ∈ M1[E0], then
there is a basic event type Eb ∈ HEB such that :C ∈ M1[Eb] and E0 abstracts* Eb.

Proof

By Theorem 3.1, HA ∪ EXA holds in M1, and by Theorem 3.2 there is such an Eb.

Q.E.D.
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Theorem 3.4

M1 is a model of HA closed under specialization if and only if M1 is a model of
HA ∪ EXA.

Proof

The "only if" half follows from Theorem 3.1.  We prove that if M1 is a model of
HA ∪ EXA, then M is closed under specialization.

Suppose not.  Then  there is an M2 which defeats M1.  M2 and M1 agree on HEB,
but there is (at least one) E0 ∈ HE–HEB and event :C such that

:C ∈ M1[E0] ∧ :C ∉ M2[E0]
By Theorem 3.2, there is an Eb ∈ HEB such  that

:C ∈ M1[Eb]
Since M1 and M2 agree on HEB,

:C ∈ M2[Eb]
But then because E0 abstracts Eb

:C ∈ M2[E0]
which is a contradiction.  Therefore there can be no such M2.  Thus M1 is closed

under specialization.

Q.E.D.

Theorem 3.5 (Disjointedness)

If event predicates E1 and E2 are not compatible, then the statement:
∀x . ¬E1(x) ∨ ¬E2(x)

is true in all models of HA which are closed under abstraction.  The statement is also

true in all A-closed models of H.



138

138

Proof

Suppose M1 is a model of HA closed under specialization in which the statement is
false.  We prove that M1 is not closed under abstraction.

So let :C be an event such that
E1(x) ∧ E2(x)

is true in M1{x/:C}, where E1 and E2 are not compatible.  Using Theorem 3.3, let Eb
be a basic event type abstracted by E1 such that :C ∈ M1[Eb].  Define M2 as follows.

Domain(M2) = Domain(M1)
M2[Z] = M1[Z] for Z ∉ HE
M2[Ei] = M1[Ei]  if Ei abstracts* Eb

M1[Ei]–{:C} otherwise
In particular, note that M1[AnyEvent]=M2[AnyEvent], since AnyEvent certainly
abstracts Eb.  We claim that M2 is a model of HA closed under specialization.

(Proof that M2 is a model of HA)

Suppose M2 is not a model of HA; in particular, suppose the axiom
∀x . Ej(x) ⊃ Ei(x)

is false in M2.  Since it is true in M1, and M2 differs from M1 only in the absence of

:C from the extension of some event predicates, it must be the case that
:C ∈ M2[Ej] ∧ :C ∉ M2[Ei]

while
:C ∈ M1[Ej] ∧ :C ∈ M1[Ei]

By the definition of M2, it must be the case that Ej abstracts* Eb.  Since Ei abstracts
Ej, then Ei abstracts* Eb as well.  But then M1 and M2 would have to agree on Ei;

that is,
:C ∈ M2[Ei]

which is a contradiction.  So M2 must be a model of HA after all.
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(Proof that M2 is closed under specialization)

By Theorem 3.4, M2 is closed under specialization if it is a model of EXA.  So

suppose it is not a model of EXA; in particular, suppose
∀x . Ej0(x) ⊃ (Ej1(x) ∨ Ej2(x) ∨ … ∨ Ejn(x))

is false.  Then it must be the case that
:C ∈ M2[Ej0] ∧ :C ∉ M2[Ej1]  ∧ … ∧ :C ∉ M2[Ejn]

But :C ∈ M2[Ej0] means that Ej0 abstracts* Eb.  Since Ej0 is not basic, at least one
of Ej1, …, Ejn abstracts Eb.  WLG, suppose it is Ej1.  Then

:C ∈ M2[Eb] ⇒ 
:C ∈ M2[Ej1]

which is a contradiction.  Therefore all members of EXA hold in M2, so M2 is closed

under specialization.

(Conclusion of proof)

Furthermore, M1 and M2 agree on all terms and predicates outside of HE–
{AnyEvent}.  Because the extension of E2 in M2 is a proper subset of the extension
of E2 in M1, M2 defeats M1's candidacy for minimality in HE–{AnyEvent} among

models closed under specialization.  Thus the statement in Theorem 3.5 holds in all
models closed under abstraction, and the subset of A-closed models.

Q.E.D.

Theorem 3.6

Let DJA be the set of all statements which instantiate Theorem 3.5 for a particular H.
If M1 is a model of HA ∪ EXA ∪ DJA such that :C ∈ M1[E0], then there is a unique
basic event type Eb such that :C ∈ M1[Eb]. Any event type which holds of :C
abstracts* Eb.
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Proof

By Theorem 3.2 there must be at least one Eb ∈ HEB such  that :C ∈ M1[Eb].  By

definition any two distinct basic event types are not compatible; thus DJA  contains
an axiom of the form

∀x . ¬Eb(x) ∨ ¬Eb'
for all other basic event types Eb'.  Therefore Eb is unique.  By Theorem 3.2 any
event type which holds of :C must abstract* Eb.

Q.E.D.

Theorem 3.7  (Unique Basic Types)

If M1 is a model of HA closed under abstraction containing event token :C1, then
there is a unique basic event type Eb such that :C ∈ M1[Eb]. Any event type which
holds of :C abstracts* Eb.

Proof

By Theorems 3.1 and 3.5, M1 is a model of HA ∪ EXA ∪ DJA.  By Theorem 3.6
there is such an Eb.

Q.E.D.

Theorem 3.8

If M1 is an model of HA ∪ EXA ∪ DJA, then M1 is a model of HA closed under

abstraction.
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Proof

Suppose not; then there is an M2 closed under specialization which defeats M1 for
minimality in HE–{AnyEvent}.  M1 and M2 agree on AnyEvent, but there exists (at
least one) E0 ∈ HE–{AnyEvent} and event :C such that

:C ∈ M1[E0] ∧ :C ∉ M2[E0]

Now
:C ∈ M1[E0] ⇒ 
:C ∈ M1[AnyEvent] ⇒ 
:C ∈ M2[AnyEvent]

By Theorem 3.3 there is some Eb ∈ HEB such that
:C ∈ M2[Eb]

Since M2 defeats  M1,
:C ∈ M1[Eb]

By Theorem 3.6, Eb is the unique basic type of :C in M1, and E0 abstracts* Eb.  But
E0 abstracts* Eb means that

:C ∈ M2[Eb] ⇒ 
:C ∈ M2[E0]

which is a contradiction.  Therefore there can be no such M2, and M1 must be closed

under abstraction.

Q.E.D.

Theorem 3.9  (Abstraction Completeness)

M1 is an A-closed model of H if and only if M1 is a model of H ∪ EXA ∪ DJA.

Proof

If M1 is an A-closed model of H, then it is also a model of HA closed under
abstraction, so by Theorems 3.1 and 3.5 it is a model of H ∪ EXA ∪ DJA.  If M1 is a
model of H ∪ EXA ∪ DJA, then it is also a model of HA ∪ EXA ∪ DJA, so by
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Theorem 3.8 it is a model of HA closed under abstraction.  Since it is also a model of

H, it is an A-closed model of H.

Q.E.D.

Theorem 3.10  (No Useless Events)

Let M1 be a covering model of H, containing event token :C1.  Then either
:C1 ∈ M1[End] is true, or there exists some event token :C2 such that :C1 is a direct
component of :C2.

Proof

Suppose the lemma is false:  M is a covering model,
:C1 ∈ M1[E1]
:C1 ∉ M1[End]

and there does not exist event token which has :C1 as a direct component.  Define
M2 as follows.

M2[Z] = M1[Z]  for  Z  ∉ HE
M2[E] = M1[E]–{:C1}  for  E  ∈ HE

Note that M1 and M2 agree on End.  If M2 is an A-closed model of HA, then M2
defeats M1 for minimality in HE–{End}.  We will prove this by showing that
H ∪ EXA ∪ DJA holds in M2.  We consider each of the types of axioms in turn.

(Case 1)  Axioms in HG must hold, because they receive the same valuation in M1
and M2.

(Case 2)  Axioms in HA are of the form:
∀x . Ej(x) ⊃ Ei(x)

Suppose one is false; then for some :D,
:D ∈ M2[Ej] ∧ :D ∉ M2[Ei]
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But this is impossible, because M1 and M2 must agree when :D ≠ :C1, as must be
case, because :C1 does not appear in the extension of any event type in M2.

(Case 3)  Axioms in EXA must hold by the same argument.

(Case 4)  Axioms in DJA must hold because they contain no positive uses of HE.

(Case 5)  The j-th axiom in HD is of the form:
∀x . Ej0(x) ⊃ Ej1(fj1(x)) ∧ Ej2(fj2(x)) ∧ … ∧ Ejn(fjn(x)) ∧  κ

Suppose it does not hold in M2.  Then  there must be some :C2 such that
Ej0(x) ∧ { ¬Ej1(fj1(x)) ∨ 

¬Ej2(fj2(x)) ∨ … ∨ 
¬Ejn(fjn(x)) ∨

¬κ }
is true in M2{x/:C2}.  M1 and M2 agree on κ, so it must the case that for some ji,

M2[fji](:C2) ∉ M2[Eji]

while
M1[fji](:C2) ∈ M1[Eji]

Because M1 and M2 differ on Eji only at :C1, it must be the case that
M1[fji](:C2) = :C1

But then :C1 is a component of :C2 in M1, contrary to our original assumption.

(End of Cases)

By Theorem 3.9 M2 is A-closed, and so it defeats M1.  This contradiction proves the

theorem.

Q.E.D.

Theorem 3.11 (Component/Use)
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Let E ∈ HE, and Com(E) be the set of event predicates with which E is compatible.

Consider all the decomposition axioms in which any element of Com(E) appears on
the right-hand side.  The j-th such decomposition axiom has the following form,
where Eji is the element of Com(E):

∀x . Ej0(x) ⊃ Ej1(fj1(x)) ∧ … ∧ Eji(fji(x)) ∧ … ∧ Ejn(fjn(x)) ∧  κ

Suppose that the series of these axioms, where an axiom is repeated as many times as
there are members of Com(E) in its right-hand side, is of length m > 0. Then the
following statement is c–valid:

∀x . E(x) ⊃ End(x) ∨ 
(∃y . E1,0(y) ∧ f1i(y)=x) ∨ 

 (∃y . E2,0(y) ∧ f2i(y)=x) ∨ 

 …  ∨ 
 (∃y . Em,0(y) ∧ fmi(y)=x) 

Proof

Let M be a covering model such that :C ∈ M[E] and :C ∉ M[End].  By Theorem 3.10
there is an Ej0, Eji, and :D such that

:D ∈ M[Ej0]
:C ∈ M[Eji]
:C = M[fji](:D)

where fji is a role function in a decomposition axiom for Ej0.  By Theorem 3.5, E and
Eji are compatible.  By inspection we see that the second half of the formula above is
true in M when x is bound to :C, because  the disjunct containing Eji is true when the

variable y is bound to :D.  Since the choice of :C was arbitrary, the entire formula is
true in M.  Finally, since M could be any covering model, the formula is c-valid.

Q.E.D.

Theorem  3.12



145

145

Let CUA be the set of all formulas which instantiate Theorem 3.11 for a particular H.
If M1 is a model of H ∪ EXA ∪ DJA ∪ CUA such that :C ∈ M1[E], then there is a
:Cn such that :Cn ∈ M1[End] and :C is a component* of :Cn.

Proof

If :C1 ∈ M1[End], then :C1 is a component* of :Cn=:C1.  So suppose
:C1 ∉ M1[End].  For the axioms in CUA to hold there must be sequences of event

tokens, types, and role functions of the following form:
:C1 :C1 :C3 :C3 :C5 :C5 … 
E1 E2 E3 E4 E5 E6 … 

f3i f5i … 

such that
For all j, :Cj ∈ M1[Ej]
For odd j, Ej and Ej+1 are compatible
For odd j, j ≥ 3, Ej-1 is a direct component of Ej, and :Cj-2 = M1[fji](:Cj)

This sequence must terminate with a :Cn such that :Cn ∈ M1[End].  Otherwise, some
Ei must appear more than once in the sequence, which would mean that a cycle exists
in H; but we have supposed that H is acyclic.  Therefore :C1 is a component* of Cn.

Q.E.D.

Theorem 3.13  (No Infinite Chains)

If M1 is a covering model of H such that C1 ∈ M1[E], then there is a :Cn such that
:Cn ∈ M1[End] and :C1 is a component* of :Cn.

Proof

By Theorems 3.9 and 3.8 M1 is a model of H ∪ EXA ∪ DJA ∪ CUA; by Theorem
3.12 there is such a :Cn.
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Q.E.D.

Theorem 3.14  (Decomposition Completeness)

M1 is a covering model of H if and only if M1 is a model of

H ∪ EXA ∪ DJA ∪ CUA.

Proof

The "only if" half follows from Theorems 3.9 and 3.11.  We prove that if M1 is a

model of H ∪ EXA ∪ DJA ∪ CUA, then it is a covering model.

Suppose not.  By Theorem 3.9, M1 is A-closed, so there must be an A-closed M2
which defeats M1 for minimality in HE–{End}.  M1 and M2 agree on all functions
and predicates outside of HE–{End}, but there exists (at least one) E1 ∈ HE–{End}
and event :C1 such that

:C1 ∈ M1[E1]
:C1 ∉ M2[E1]

By Theorem 3.12 there is a :Cn such that
:Cn ∈ M1[End]

and :C1 is a component* of :Cn.  By the construction used in the proof of Theorem

3.12 there are sequences
:C1 :C1 :C3 :C3 … :Cn :Cn
E1 E2 E3 E4 … En En+1 = End

f3i … fni
such that

For all j, 1 ≤ j ≤ n+1, :Cj ∈ M1[Ej]
For odd j, Ej and Ej+1 are compatible

For odd j, 3 ≤ j ≤ n
Ej-1 is a direct component of Ej
:Cj-2 = M1[fji](:Cj) = M2[fji](:Cj)
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Because M1 and M2 agree on End,
:Cn ∈ M2[End]

Now for any odd j, 3 ≤ j ≤ n, if
:Cj ∈ M2[Ej]

then since HD holds in M2,
:Cj-2 ∈ M2[Ej-1]

If we prove that for all odd j, 1 ≤ j ≤ n
:Cj ∈ M2[Ej+1] ⇒ :Cj ∈ M2[Ej]

we will be done; because we would then know that
:Cn ∈ M2[End] ⇒ 
:Cn ∈ M2[En+1] ⇒ 
:Cn ∈ M2[En] ⇒ 
:Cn-2 ∈ M2[En-1] ⇒ 

… ⇒ 
:C3 ∈ M2[E3] ⇒ 
:C1 ∈ M2[E2] ⇒ 
:C1 ∈ M2[E1] ⇒ 

which yields the desired contradiction.  So lets prove that
:Cj ∈ M2[Ej+1] ⇒ :Cj ∈ M2[Ej]

Assume the antecedent
:Cj ∈ M2[Ej+1]

Because M2 is A-closed, there is a unique Eb ∈ HEB such that
:Cj ∈ M2[Eb]

Because M2 defeats M1,
:Cj ∈ M1[Eb]

Since M1 is A-closed, Theorem 3.7 tells us that because
:Cj ∈ M1[Ej]

it must be the case that Ej abstracts* Eb.  But then since HA holds in M2,
:Cj ∈ M2[Ej]

and we are done.

Q.E.D.
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Theorem 3.15  (Computability of C-Entailment)

There is a computable function cl which maps a hierarchy H into a set of axioms with
the property that

Q Hº=
c P

if and only if
cl(H) ∪ Q º= P

Proof

The function simply computes H ∪ EXA ∪ DJA ∪ CUA, which is a finite,
recursively enumerable set.  Theorem 3.14 guarantees the equivalence.

Theorem 3.16  (Not Predicate Completion)

Theorem 3.11 cannot be strengthened by considering only axioms in which E appears
as a component, instead of all axioms in which event types compatible with E appear
as components.

Proof

Consider the following hierarchy:
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HA
∀x . E1(x) ⊃ AnyEvent(x)
∀x . E2(x) ⊃ AnyEvent(x)
∀x . E3(x) ⊃ E1(x)
∀x . E3(x) ⊃ E2(x)

∀x . End(x) ⊃ AnyEvent(x)
∀x . E4(x) ⊃ End(x)
∀x . E5(x) ⊃ End(x)

HD
∀x . E4(x) ⊃ E1(f4(x)) ∧ P
∀x . E5(x) ⊃ E2(f5(x)) ∧ Q

The modified statement would not hold in the covering model
{ AnyEvent(D), End(D), E4(D), E1(f4(D)),
E3(f4(D)), E2(f4(D)), AnyEvent(f4(D)) }

because even though E1(f4(D)) is true, there is no instance of E5.

Q.E.D.

Theorem 3.17  (C-entailment and Circumscription)

For a given a hierarchy H, a statement P is c-entailed by Q if and only if P follows
from the following schema:

Q ∧ Circum( H ∧ Circum( Circum( HA ,  HE–HEB ),

{AnyEvent}),
HE–{End})

Note that the two inner circumscriptions apply only to the abstraction hierarchy, while
the final circumscription applies to all of H.
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Proof

See [Etherington 86] for proof of the correctness of circumscription.  Since the result
of all the minimizations can be described by a finite set of axioms, we strongly
suspect that circumscription is complete in this case.  (No proof, however, has
appeared in the literature.)

Q.E.D.
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Appendix B
Chapter 4 Proofs

Theorem 4.1  (Minimum Cardinality Defaults)

Consider the following sequences of statements.
MA0. ∀x . ¬End(x)
MA1. ∀x,y . End(x) ∧ End(y) ⊃ x=y
MA2. ∀x,y,z . End(x) ∧ End(y) ∧ End(z)

⊃ (x=y) ∨ (x=z) ∨ (y=z)
… 

The first asserts that no End events exist; the second, no more than one End event
exists; the third, no more than two; and so on.  Let P be any sentence, Γ any sentence
or set of sentences, and H a hierarchy.  Suppose there is a minimum covering model
in which the extension of End is finite.  Then

Γ Hº=mc Ω

if and only if
Γ ∪ cl(H) ∪ MAi º− Ω

where i is the smallest integer such that left-hand side of the provability relation is
consistent.

Proof

We'll prove that M1 is a minimum cover of Γ relative to H (with finite extension of
End) if and only if M1 is a model of Γ ∪ cl(H) ∪ MAi.  The theorem then follows

from completeness and correctness of first-order logic.

Suppose M1 is a model of Γ ∪ cl(H) ∪ MAi.  By Theorem 3.14, M1 is a covering
model.  Clearly |M1[End]| ≤ i.  Suppose that M1 were defeated for minimum
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cardinality in End by M2.  Then |M2[End]| = j < i.  But by Theorem 3.14 M2 is a
model of Γ ∪ cl(H).  Because |M2[End]| = j, M2 is also a model of MAj.  But this is
impossible, because we've assumed that Γ ∪ cl(H) ∪ MAj is inconsistent.  So M1
cannot be defeated, and must be a minimum cover.

Suppose M1 is such a minimum cover, where |M1[End]| = n.  As before, M1 must be
model of Γ ∪ cl(H).  Suppose it were not a model of MAi.  Then  |M1[End]| > i.  But
because Γ ∪ cl(H) ∪ MAi is consistent, it has a model M2, which is also be a
covering model, with  |M2[End]| ≤ i.   But this is impossible, because M2 would
defeat M1.  Therefore MAi must also be true in M1.

Q.E.D.

Theorem 4.2  (Cardinality Circumscription)
Let α include all the predicate, function, and constant symbols in our language other
than End.  Suppose that all models of H are infinite, and in some model of Γ ∪ cl(H),
End has a finite extension.   If

Circum(Γ ∪ cl(H), {End}, α) º− Ω
then

Γ Hº=mc Ω

where Circum(Γ ∪ cl(H), {End}, α) means to circumscribe with α varying.  The "if"
is strengthened to "if and only if" if it is true that circumscription is complete in this
case.

Proof

We prove that M1 is a minimum covering model of Γ relative to H if and only if M1
is minimal in End among models of Γ ∪ cl(H) where α varies.  The theorem then
follows from correctness of circumscription.  The strengthened version of the theorem
depends upon the truth of the proposition that circumscription is complete when the
result of the circumscription is equivalent to a finite set of first-order formulas.
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Although this proposition is very likely to be true, no proof has yet been discovered
[Etherington 87].

(if)  Suppose M1 is a minimum covering model of Γ.  By Theorem 3.14 M1 is a
model of Γ ∪ cl(H).  Suppose M1 were not minimal in End where α varies; that is,
there is an M2 such that

1.  M2 is a model of Γ ∪ cl(H)
2.  domain(M1) = domain(M2)
3.  M2[End] ⊂ M1[End]

But (1) implies M2 is a covering model, and (2) implies that |M2[End]| < |M1[End]|,
so M2 would defeat M1's candidacy as a minimum covering model.  So there can be
no such M2, and M1 is minimal in End where α varies.

(only if)  Suppose M1 is minimal in End among models of Γ ∪ cl(H) where α varies.
Suppose M1 is not a minimum covering model of Γ.  Since M1 is a covering model,
there must be an M2 which defeats M1's candidacy to be a minimum covering model,

with
|M2[End]| < |M1[End]|

We will construct a model which defeats M1's candidacy for minimality in End where
α  varies, yielding the desired contradiction.  But M2 itself is not suitable, because its
domain and M1's domain may differ, and may not even be of the same size.  So

consider the following two cases:
1.  Suppose |Domain(M1)| ≤ |Domain(M2)|.  Apply the Downward Tarski-
Löwenheim-Skolem Theorem [Barwise 77] and let M3 be an elementary
submodel of M2 such that |Domain(M1)| = |Domain(M3)|.
2.  Otherwise |Domain(M1)| > |Domain(M2)|.  Apply the Upward Tarski-
Löwenheim-Skolem Theorem and let M3 be an elementary extension of M2
such that |Domain(M1)| = |Domain(M3)|.

Because M3 is an elementary submodel or extension, and M2 is a model of Γ
∪ cl(H), M3 is a model of Γ ∪ cl(H).  Furthermore, we have assumed that  |M2[End]|
is finite, let's say of size n.  Then the sentence MAn is true in M2, and therefore also
in M3.  This means that |M3[End]| ≤ |M2[End]|.  Thus M3 is a covering model which
defeats M1's candidacy to be a minimum covering model.
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Let M4 be a homomorphism of M3 such that Domain(M4)=Domain(M1).  Now we
have a model of  Γ ∪ cl(H) which has the same domain as M1, but is smaller in the

size of its extension of End.  But we need a model where the extension of End which
is a subset of that in M1.

Suppose
M1[End] = { :A1, :A2, … :Aj, :C1, :C2, … :Ck, :Ck+1, …  }
M4[End] = { :A1, :A2, … :Aj, :B1, :B2, … :Bk }

That is,  :A1 through :Aj (where possibly j=0) are the elements in End that M1 and
M2 have in common.  Elements :C1 and up are in End only in M1, and :B1 through
:Bk are only in End in M4.  The postfix substitution operator {:A/:B} replaces all

instances of :A by instances of :B.  Let θ be the substitution which swaps all the :Bi
with :Ci.

θ = {:B1/:C1, … :Bk/:Ck, :C1/:B1, … :Ck/:Bk}
Define M5 as follows.

M5[p] = M2[p]θ  for all predicates p
M5[c] = M2[c]θ  for all constants c
M5[f] = λx1,x2, … xn . (M2[f](x1 θ, x2 θ, … xn θ))θ

for all n-ary functions f
M5 is a homomorphism of M4, and is therefore a model of Γ ∪ cl(H). The proper

subset condition is satisified because
M5[End] = {:A1, … :Aj, :C1, … :Ck} ⊂ M1[End]

Because α includes all symbols other than End, M1 and M5 do not have to agree on
the interpretation of any symbols.  So M5 defeats M1's candidacy for minimality in
End where α  varies, which is a contradiction.  Therefore M1 is a minimum covering

model of Γ.

Q.E.D.
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Appendix C
Chapter 5 Proofs

Theorem 5.1  (Non-Universal Conclusions)

Let Ω be a sentence which, when written with all quantifiers in initial position,
contains no universal quantifiers.  Then

Γ Hº=mcs Ω

if and only if
Γ Hº=mc Ω

Proof

(Only if)  Trivial, since a minimum cover is an mcs-model.

(If)  Ω can be written
∃ x1, … xn . ω

where ω is a sentence containing no quantifiers in which x1, … xn appear free.
Suppose Ω holds in all minimum covers.  Let M1 be any mcs-model.  Then M1
contains submodel M2 in which

∃ x1, … xn . ω

But this is only the case if there are
:C1, … :Cn ∈ Domain(M2)

such that  ω is true in  M2{x1/:C1, … xn/:Cn}.  A straightforward inductive argument
shows that ω is true in  M1{x1/:C1, … xn/:Cn} because all terms in ω are interpreted
by M1{x1/:C1, … xn/:Cn} as individuals in the domain of M2.  Therefore Ω holds in
M1, and in all mcs-models.

Q.E.D.
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Theorem 5.2  (Incremental Recognition)
In the case of a single observation, imc-entailment is the same as mcs-entailment.

(Γ1) Hº=imc Ω

if and only if
Γ1 Hº=mcs Ω

In the case of multiple observations, imc-entailment is monotonic.
(Γ1, … Γn-1) Hº=imc Ω

implies
(Γ1, … Γn-1, Γn) Hº=imc Ω

Proof

The first part of the theorem follows from the base case of the definition of imc-
entailment.  The second part of the theorem follows from the fact that an incremental
minimum cover of (Γ1, … Γn–1, Γn) must also be an incremental minimum cover of
(Γ1, … Γn-1).  Therefore if Ω holds in all models of the latter sort, it must also hold

in all models of the former sort.
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Appendix D
Temporal Constraint Logic

The following rules translate Allen's temporal interval operators into an
algebra on fuzzy interval constraints.  A time interval is represented by a term which
is interpreted as a pair of real numbers.  The functions first-instant and last-instant
apply to a interval and yield the lower and upper bounds respectively.  A fuzzy
interval constraint  is a tuple of four real numbers.  A time interval satisfies a fuzzy
constraint, written

I ∈ (start-min, start-max, end-min, end-max)

if the first instance of I falls between start-min and start-max inclusive, and the final
instance of I falls between end-min and end-max inclusion.   That is,

(start-min ² first-instant(I) ² start-max) ∧ 
(end-min ² last-instant(I) ² end-max)

While start-min, start-max, etc., are represented by numerals, first-instant(I) and last-
instant(I) remain symbolic quantities.

The form of each each rule is as follows:  given that T1 satisfies fuzzy
constraint Z1, and T2 satisfies fuzzy constraint Z2, and T1 is related by a given
binary-operator to T2, then it must be the case that T1 satisfies fuzzy constraint Z3.
The logical form of the rules is as follows, where Z3 = Ftransitive(Z1, binary-op, Z2).

Where T1, T2 are time intervals, and Z1,Z2 are fuzzy constraints:
T1 ∈ Z1 ∧ T2 ∈ Z2 ∧ T1 binary-op T2 ⊃

T1 ∈ Ftransitive(Z1, binary-op, Z2)

Suppose that T1 and T2 are related by a disjunction of temporal operators.  Then one
calculates Z3 for each alternative, and then combine all the answers with the Funion
function, which is defined below.  In formal terms:
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T1 ∈ Z1 ∧ T2 ∈ Z2 ∧ T1 (op1 op2 … opn) T2 ⊃
T1 ∈ Funion( Ftransitive(Z1, op1, Z2),

Ftransitive(Z1, op2, Z2),
… , Ftransitive(Z1, opn, Z2) )

Where T1 (op1 op2 … opn) T2 ≡ 
(T1 op1 T2) ∨ (T1 op2 T2) ∨ … ∨ (T1 opn T2) 

Consider the case where an interval is known to satisfy two different fuzzy
constraints.  Then it must be the case that the interval satisfies the Fintersection of the
constraints.  Formally:

T1 ∈ Z1 ∧ T1 ∈ Z2  ⊃ T1 ∈ Fintersection( Z1, Z2)

Finally, the predicate empty is true of a fuzzy constraint just in case no interval could
satisfy it.

The following tables define the Funion, Fintersection, empty and Ftransitive
functions.  Their correctness can be verified by elementary algebra.

Funion( (a1 b1 c1 d1), …, (an bn cn dn) ) =

( min(a1, …,an)  max(b1, … ,bn)  min(c1, …,cn)  max(d1, …,dn)  )

Fintersection( (a1 b1 c1 d1), …, (an bn cn dn) ) =

( max(a1, …,an)  min(b1, … ,bn)  max(c1, …,cn)  min(d1, …,dn)  )

empty( (a b c d) ) =
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a > b ∨ c > d ∨ a > d

Ftransitive( (a b c d), op, (e f g h) ) = (w x y z)

op w x y z
before a min(b,f) c min(d,f)
meets a min(b,f) max(c,e) min(d,f)
overlaps a min(b,f) max(c,e) min(d,h)
starts max(a,e) min(b,f) max(c,e) min(d,h)
during max(a,e) min(b,h) max(c,e) min(d,h)
finishes max(a,e) min(b,h) max(c,g) min(d,h)
overlapped by max(a,e) min(b,h) max(c,g) d
met by max(a,g) min(b,h) max(c,g) d
after max(a,g) b max(c,g) d
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Appendix E
Transcripts

Following are transcripts of the implementation running on some of the
examples discussed in this thesis.

Hunt/Rob Example
;; First observation:  get–gun(GET-GUN1).  Builds graph named g1.

Command: (EXPLAIN–OBSERVATION '(GET-GUN1 GET–GUN) 'G1)
  T

;; Display e-graph g1.
;; There are two alternatives, with GET-GUN1 as component of rob–bank or of hunt.
Command: (DRAW–GRAPH)
graph G1
END226
      ?= HUNT228
           ?= HUNT227
                S1 –> GET-GUN1
      ?= ROB–BANK225
           ?= ROB–BANK224
                S1 –> GET-GUN1   ^

 The e-graphs are printed out linearly, where the
symbol ?= represents an alternative link and
rolename-> represents a component (and) link.  The
symbol ^ indicates a link to structure already printed
above.  This description is equivalent to the following
diagram:
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End(N226)

Rob-Bank(N224) Hunt(N227)

Get-Gun(N1)

Rob-Bank(N225) Hunt(N228)

s1 s1

= =

= =

OR

figure E.1:  E-Graph for Get-Gun

The one difference from the algorithm described in
Chapter 7 is the inclusion of nodes which "abstract
away" the steps of any node which has explicit
component links.  In this example, HUNT228 abstracts
HUNT227, but doesn't include the component S1.
These extra nodes do not change the semantics of e-
graphs, but they do allow a more compact
representation of the graphs when the type to be
explained can fill several different roles in a user type.
In such a case, a different user node is created for each
use, but all can become alternatives for the same
abstract node of that user type.

;; Turn on tracing.

Command: (SETQ *NOISY* T)
  T

;; Second observation: go–to–bank(GO-TO-BANK2), in graph G2.

Command: (EXPLAIN–OBSERVATION '(GO-TO-BANK2 GO–TO–BANK) 'G2)
 ... creating node GO-TO-BANK2
 ... searching up from GO-TO-BANK2
 ... creating node CASH–CHECK229
 ... considering GO-TO-BANK2 as S1 of CASH–CHECK229
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 ... checking constraints on CASH–CHECK229
 ... CASH–CHECK229 is okay
 ... searching up from CASH–CHECK229
 ... creating node CASH–CHECK230
 ... searching up from CASH–CHECK230
 ... creating node END231
 ... searching up from END231
 ... creating node ROB–BANK232
 ... considering GO-TO-BANK2 as S2 of ROB–BANK232
 ... checking constraints on ROB–BANK232
 ... ROB–BANK232 is okay
 ... searching up from ROB–BANK232
 ... creating node ROB–BANK233
 ... searching up from ROB–BANK233
 ... merging graph at END231
  T

;; Show g2, again two alternatives:  rob–bank or cash–check.

Command: (DRAW–GRAPH)
graph G2
END231
      ?= ROB–BANK233
           ?= ROB–BANK232
                S2 –> GO-TO-BANK2
      ?= CASH–CHECK230
           ?= CASH–CHECK229
                S1 –> GO-TO-BANK2   ^

;; Matching the graphs yields just the rob–bank alternative.

Command: (MATCH–GRAPHS 'G1 'G2 'G1+G2)
 ... trying to match END226 with END231
 ... creating node END234
 ... checking constraints on END234
 ... END234 is okay
 ... checking constraints on END234
 ... END234 is okay
 ... trying to match HUNT228 with ROB–BANK233
 ... trying to match HUNT228 with CASH–CHECK230
 ... trying to match ROB–BANK225 with ROB–BANK233
 ... creating node ROB–BANK235
 ... checking constraints on ROB–BANK235
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 ... ROB–BANK235 is okay
 ... checking constraints on ROB–BANK235
 ... ROB–BANK235 is okay
 ... trying to match ROB–BANK224 with ROB–BANK232
 ... creating node ROB–BANK236
 ... checking constraints on ROB–BANK236
 ... ROB–BANK236 is okay
 ... creating node GO–TO–BANK237
 ... checking constraints on GO–TO–BANK237
 ... GO–TO–BANK237 is okay
 ... checking constraints on GO–TO–BANK237
 ... GO–TO–BANK237 is okay
 ... copying GO-TO-BANK2 yields GO–TO–BANK237
 ... creating node GET–GUN238
 ... checking constraints on GET–GUN238
 ... GET–GUN238 is okay
 ... checking constraints on GET–GUN238
 ... GET–GUN238 is okay
 ... copying C1 yields GET–GUN238
 ... checking constraints on ROB–BANK236
 ... ROB–BANK236 is okay
 ... successful match of ROB–BANK224 and ROB–BANK232 yields ROB–
BANK236
 ... successful match of ROB–BANK225 and ROB–BANK233 yields ROB–
BANK235
 ... trying to match ROB–BANK225 with CASH–CHECK230
 ... successful match of END226 and END231 yields END234
  END234

Command: (DRAW–GRAPH)
graph G1+G2
END234
      ?= ROB–BANK235
           ?= ROB–BANK236
                S1 –> GET–GUN238
                S2 –> GO–TO–BANK237

Cooking Examples
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;; First observation is make–sauce(OBS–SAUCE2), with agent Joe, during
;; time interval beginning between 4 and 5, and ending between 6 and 7.

 Note that fuzzy time constraints are represented by
VECTORS with TIME as first element.  The parameters
of the observation are specified by a list of (role value)
pairs.  The first use of the symbol "time" below refers to
the role Time, while the second  merely identifies the
vector value as a time constraint.

Command: (EXPLAIN–OBSERVATION '(OBS–SAUCE2 MAKE–SAUCE
(AGENT JOE) (TIME #(TIME 4 5 6 7))))

 ... creating node OBS–SAUCE2
 ... searching up from OBS–SAUCE2
 ... creating node MAKE–PASTA–DISH246
 ... considering OBS–SAUCE2 as S2 of MAKE–PASTA–DISH246
 ... checking constraints on MAKE–PASTA–DISH246
 ... MAKE–PASTA–DISH246 is okay
 ... searching up from MAKE–PASTA–DISH246
 ... creating node MAKE–PASTA–DISH247
 ... searching up from MAKE–PASTA–DISH247
 ... creating node PREPARE–MEAL248
 ... searching up from PREPARE–MEAL248
 ... creating node END249
 ... searching up from END249
 ... creating node MAKE–MARINARA250
 ... checking constraints on MAKE–MARINARA250
 ... MAKE–MARINARA250 is okay
 ... searching up from MAKE–MARINARA250
 ... creating node MAKE–CHICKEN–MARINARA251
 ... considering MAKE–MARINARA250 as S5 of MAKE–CHICKEN–
MARINARA251
 ... checking constraints on MAKE–CHICKEN–MARINARA251
 ... MAKE–CHICKEN–MARINARA251 is okay
 ... searching up from MAKE–CHICKEN–MARINARA251
 ... creating node MAKE–CHICKEN–MARINARA252
 ... searching up from MAKE–CHICKEN–MARINARA252
 ... creating node MAKE–MEAT–DISH253
 ... searching up from MAKE–MEAT–DISH253
 ... merging graph at PREPARE–MEAL248
  T

;; View the graph.
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The parameters of each node appear in a list of
role/value pairs after the node name.  Only parameters
for which a value has been calculated are included.

Command: (DRAW–GRAPH T)
graph G2
END249 NIL
      ?= PREPARE–MEAL248 ((AGENT JOE) (TIME #(TIME –INF 5 6 +INF)))
           ?= MAKE–MEAT–DISH253

((AGENT JOE) (TIME #(TIME –INF 5 6 +INF)))
                ?= MAKE–CHICKEN–MARINARA252

((AGENT JOE) (TIME #(TIME –INF 5 6 +INF)))
                     ?= MAKE–CHICKEN–MARINARA251

((AGENT JOE) (TIME #(TIME –INF 5 6 +INF)))
                           S5 –> MAKE–MARINARA250

((AGENT JOE) (TIME #(TIME 4 5 6 7)))
          ?= MAKE–PASTA–DISH247

((AGENT JOE) (TIME #(TIME –INF 5 6 +INF)))
                ?= MAKE–PASTA–DISH246

((AGENT JOE) (TIME #(TIME –INF 5 6 +INF)))
                     S2 –> OBS–SAUCE2 ((AGENT JOE) (TIME #(TIME 4 5 6 7)))

;; The second observation is making noodles.

Command: (EXPLAIN–OBSERVATION '(OBS–NOODLES3 MAKE–NOODLES
(AGENT JOE) #(TIME 6 8 7 9)))

  T

Command: (DRAW–GRAPH T)
graph G3
END257 NIL
      ?= PREPARE–MEAL256

((AGENT JOE) (TIME #(TIME –INF 8 7 +INF)))
           ?= MAKE–PASTA–DISH255

((AGENT JOE) (TIME #(TIME –INF 8 7 +INF)))
                ?= MAKE–PASTA–DISH254

((AGENT JOE) (TIME #(TIME –INF 8 7 +INF)))
                     S1 –> OBS–NOODLES3 ((AGENT JOE) (TIME #(TIME 6 8 7 9)))

;; We can merge G2 and G3 together: they can be steps of the same action.

Command: (MATCH–GRAPHS 'G2 'G3 'G2+G3)
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 ... trying to match END249 with END257
 ... creating node END258
 ... checking constraints on END258
 ... END258 is okay
 ... checking constraints on END258
 ... END258 is okay
 ... trying to match PREPARE–MEAL248 with PREPARE–MEAL256
 ... creating node PREPARE–MEAL259
 ... checking constraints on PREPARE–MEAL259
 ... PREPARE–MEAL259 is okay
 ... checking constraints on PREPARE–MEAL259
 ... PREPARE–MEAL259 is okay
 ... trying to match MAKE–MEAT–DISH253 with MAKE–PASTA–DISH255
 ... trying to match MAKE–PASTA–DISH247 with MAKE–PASTA–DISH255
 ... creating node MAKE–PASTA–DISH260
 ... checking constraints on MAKE–PASTA–DISH260
 ... MAKE–PASTA–DISH260 is okay
 ... checking constraints on MAKE–PASTA–DISH260
 ... MAKE–PASTA–DISH260 is okay
 ... trying to match MAKE–PASTA–DISH246 with MAKE–PASTA–DISH254
 ... creating node MAKE–PASTA–DISH261
 ... checking constraints on MAKE–PASTA–DISH261
 ... MAKE–PASTA–DISH261 is okay
 ... creating node MAKE–NOODLES262
 ... checking constraints on MAKE–NOODLES262
 ... MAKE–NOODLES262 is okay
 ... checking constraints on MAKE–NOODLES262
 ... MAKE–NOODLES262 is okay
 ... copying OBS–NOODLES3 yields MAKE–NOODLES262
 ... creating node MAKE–SAUCE263
 ... checking constraints on MAKE–SAUCE263
 ... MAKE–SAUCE263 is okay
 ... checking constraints on MAKE–SAUCE263
 ... MAKE–SAUCE263 is okay
 ... copying OBS–SAUCE2 yields MAKE–SAUCE263
 ... checking constraints on MAKE–PASTA–DISH261
 ... MAKE–PASTA–DISH261 is okay
 ... successful match of MAKE–PASTA–DISH246 and MAKE–PASTA–DISH254
yields MAKE–PASTA–DISH260
 ... successful match of MAKE–PASTA–DISH247 and MAKE–PASTA–DISH255
yields MAKE–PASTA–DISH261
 ... successful match of PREPARE–MEAL248 and PREPARE–MEAL256 yields
PREPARE–MEAL259
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 ... successful match of END249 and END257 yields END258
  END258

Command: (DRAW–GRAPH T)
graph G2+G3
END258 NIL
      ?= PREPARE–MEAL259 ((AGENT JOE) (TIME #(TIME –INF 5 7 +INF)))
           ?= MAKE–PASTA–DISH260

((AGENT JOE) (TIME #(TIME –INF 5 7 +INF)))
                ?= MAKE–PASTA–DISH261

((AGENT JOE) (TIME #(TIME –INF 5 7 +INF)))
                     S2 –> MAKE–SAUCE263

((AGENT JOE) (TIME #(TIME 4 5 6 7)))
                     S1 –> MAKE–NOODLES262

((AGENT JOE) (TIME #(TIME 6 8 7 9)))

;; Now consider an observation of make–noodles with a different agent.  The
constants
;; Joe and Sally are rigid designators, and therefore unequal.

Command: (EXPLAIN–OBSERVATION '(OBS–NOODLES4 MAKE–NOODLES
(AGENT SALLY) #(TIME 6 8 7 9)))

  T

;; Try to match this with the original make–sauce.  It will fail, because agents differ.

Command: (MATCH–GRAPHS 'G2 'G4 'G2+G4)
 ... trying to match END249 with END267
 ... creating node END268
 ... checking constraints on END268
 ... END268 is okay
 ... checking constraints on END268
 ... END268 is okay
 ... trying to match PREPARE–MEAL248 with PREPARE–MEAL266
 ... creating node PREPARE–MEAL269
 ... equality constraint violated JOE = SALLY
 ... PREPARE–MEAL269 fails
 ... END268 fails
  NIL

;; Lets check out the temporal constraints, now.  We'll observe a boiling event
;; with time BEFORE the make–noodles event.  This conflict will prevent a match.
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Command: (EXPLAIN–OBSERVATION '(OBS–BOILING5 BOIL
(TIME #(TIME 1 1 2 2))) 'G5)

  T

Command: (DRAW–GRAPH T)
graph G5
END273 NIL
      ?= PREPARE–MEAL272 ((TIME #(TIME –INF 1 2 +INF)))
           ?= MAKE–PASTA–DISH271 ((TIME #(TIME –INF 1 2 +INF)))
                ?= MAKE–PASTA–DISH270 ((TIME #(TIME –INF 1 2 +INF)))
                     S3 –> OBS–BOILING5 ((TIME #(TIME 1 1 2 2)))

;; Try to match this with G2 and G3.  This will fail because of temporal constraint
violation.

Command: (MATCH–GRAPHS 'G2+G3 'G5 'G2+G3+G5)
 ... trying to match END258 with END273
 ... creating node END274
 ... checking constraints on END274
 ... END274 is okay
 ... checking constraints on END274
 ... END274 is okay
 ... trying to match PREPARE–MEAL259 with PREPARE–MEAL272
 ... creating node PREPARE–MEAL275
 ... checking constraints on PREPARE–MEAL275
 ... PREPARE–MEAL275 is okay
 ... checking constraints on PREPARE–MEAL275
 ... PREPARE–MEAL275 is okay
 ... trying to match MAKE–PASTA–DISH260 with MAKE–PASTA–DISH271
 ... creating node MAKE–PASTA–DISH276
 ... checking constraints on MAKE–PASTA–DISH276
 ... MAKE–PASTA–DISH276 is okay
 ... checking constraints on MAKE–PASTA–DISH276
 ... MAKE–PASTA–DISH276 is okay
 ... trying to match MAKE–PASTA–DISH261 with MAKE–PASTA–DISH270
 ... creating node MAKE–PASTA–DISH277
 ... checking constraints on MAKE–PASTA–DISH277
 ... MAKE–PASTA–DISH277 is okay
 ... creating node MAKE–NOODLES278
 ... checking constraints on MAKE–NOODLES278
 ... MAKE–NOODLES278 is okay
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 ... checking constraints on MAKE–NOODLES278
 ... MAKE–NOODLES278 is okay
 ... copying MAKE–NOODLES262 yields MAKE–NOODLES278
 ... creating node MAKE–SAUCE279
 ... checking constraints on MAKE–SAUCE279
 ... MAKE–SAUCE279 is okay
 ... checking constraints on MAKE–SAUCE279
 ... MAKE–SAUCE279 is okay
 ... copying MAKE–SAUCE263 yields MAKE–SAUCE279
 ... creating node BOIL280
 ... checking constraints on BOIL280
 ... BOIL280 is okay
 ... checking constraints on BOIL280
 ... BOIL280 is okay
 ... copying OBS–BOILING5 yields BOIL280
 ... checking constraints on MAKE–PASTA–DISH277
 ... time constraint violated #(TIME 6 8 7 9) BEFOREMEET #(TIME 1 1 2 2)
 ... MAKE–PASTA–DISH277 fails
 ... MAKE–PASTA–DISH276 fails
 ... PREPARE–MEAL275 fails
 ... END274 fails
  NIL

;; Now let's find a LATER boiling event.  It will match okay.

Command: (EXPLAIN–OBSERVATION '(OBS–BOILING6 BOIL
(TIME #(TIME 9 10 11 12))) 'G6)

  T

Command: (MATCH–GRAPHS 'G2+G3 'G6 'G2+G3+G6)
  END285

Command: (DRAW–GRAPH T)
graph G2+G3+G6
END285 NIL
      ?= PREPARE–MEAL286 ((AGENT JOE) (TIME #(TIME –INF 5 11 +INF)))
           ?= MAKE–PASTA–DISH287

((AGENT JOE) (TIME #(TIME –INF 5 11 +INF)))
                ?= MAKE–PASTA–DISH288

((AGENT JOE) (TIME #(TIME –INF 5 11 +INF))
                     S3 –> BOIL291 ((TIME #(TIME 9 10 11 12)))
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                     S2 –> MAKE–SAUCE290
((AGENT JOE) (TIME #(TIME 4 5 6 7)))

                     S1 –> MAKE–NOODLES289
((AGENT JOE) (TIME #(TIME 6 8 7 9)))

Operating System Examples
;; User enters:  % copy foo bar.

Command: (EXPLAIN–OBSERVATION '(OBS–COPY1 COPY
(OLD FOO) (NEW BAR)) 'C1)

  T

;; Could be part of rename by copy, or of modify file.

Command: (DRAW–GRAPH T)
graph C1
END294 NIL
      ?= RENAME297 ((NEW BAR) (OLD FOO))
           ?= RENAME–BY–COPY296 ((NEW BAR) (OLD FOO))
                ?= RENAME–BY–COPY295 ((NEW BAR) (OLD FOO))
                     COPY–ORIG–STEP –> OBS–COPY1 ((NEW BAR) (OLD FOO))
      ?= MODIFY293 ((FILE FOO))
           ?= MODIFY292 ((FILE FOO))
                BACKUP–STEP –> OBS–COPY1 ((NEW BAR) (OLD FOO))  ^

;; User enters: % copy jack sprat.

Command: (EXPLAIN–OBSERVATION '(OBS–COPY2 COPY
(OLD JACK) (NEW SPRAT)) 'C2)

  T

;; Try (and fail) to unify these commands.  File names are rigid designators,
;;  and so cannot be matched unless identical.

Command: (MATCH–GRAPHS 'C1 'C2 'C1+C2)
 ... trying to match END294 with END300
 ... creating node END304
 ... checking constraints on END304
 ... END304 is okay
 ... checking constraints on END304
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 ... END304 is okay
 ... trying to match RENAME297 with RENAME303
 ... creating node RENAME305
 ... equality constraint violated BAR = SPRAT
 ... RENAME305 fails
 ... trying to match RENAME297 with MODIFY299
 ... trying to match MODIFY293 with RENAME303
 ... trying to match MODIFY293 with MODIFY299
 ... creating node MODIFY306
 ... equality constraint violated FOO = JACK
 ... MODIFY306 fails
 ... END304 fails
  NIL

;; So, there must be two different plans going on.
;; User enters: % delete foo

Command: (EXPLAIN–OBSERVATION '(OBS–DELETE3 DELETE
(FILE FOO)) 'C3)

  T

Command: (DRAW–GRAPH T)
graph C3
END310 NIL
      ?= MODIFY312 NIL
           ?= MODIFY311 NIL
                DELETE–BACKUP–STEP –> OBS–DELETE3 ((FILE FOO))
      ?= RENAME309 ((OLD FOO))
           ?= RENAME–BY–COPY308 ((OLD FOO))
                ?= RENAME–BY–COPY307 ((OLD FOO))
                     DELETE–ORIG–STEP –> OBS–DELETE3 ((FILE FOO))  ^

;; This delete can unify with command 1, but not command 2

Command: (MATCH–GRAPHS 'C1 'C3 'C1+C3)
  END313

Command: (DRAW–GRAPH T)
graph C1+C3
END313 NIL
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      ?= RENAME314 ((NEW BAR) (OLD FOO))
           ?= RENAME–BY–COPY315 ((NEW BAR) (OLD FOO))
                ?= RENAME–BY–COPY316 ((NEW BAR) (OLD FOO))
                     DELETE–ORIG–STEP –> DELETE318 ((FILE FOO))
                     COPY–ORIG–STEP –> COPY317 ((NEW BAR) (OLD FOO))

 ;; Command 2 and 3 cannot be part of the end plan

Command: (MATCH–GRAPHS 'C2 'C3 'C2+C3)
 ... trying to match END300 with END310
 ... creating node END321
 ... checking constraints on END321
 ... END321 is okay
 ... checking constraints on END321
 ... END321 is okay
 ... trying to match RENAME303 with MODIFY312
 ... trying to match RENAME303 with RENAME309
 ... creating node RENAME322
 ... equality constraint violated JACK = FOO
 ... RENAME322 fails
 ... trying to match MODIFY299 with MODIFY312
 ... creating node MODIFY323
 ... checking constraints on MODIFY323
 ... MODIFY323 is okay
 ... checking constraints on MODIFY323
 ... MODIFY323 is okay
 ... trying to match MODIFY298 with MODIFY311
 ... creating node MODIFY324
 ... checking constraints on MODIFY324
 ... MODIFY324 is okay
 ... creating node COPY325
 ... checking constraints on COPY325
 ... COPY325 is okay
 ... checking constraints on COPY325
 ... COPY325 is okay
 ... copying OBS–COPY2 yields COPY325
 ... creating node DELETE326
 ... checking constraints on DELETE326
 ... DELETE326 is okay
 ... checking constraints on DELETE326
 ... DELETE326 is okay
 ... copying OBS–DELETE3 yields DELETE326
 ... checking constraints on MODIFY324
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 ... equality constraint violated FOO = SPRAT
 ... MODIFY324 fails
 ... MODIFY324 fails
 ... MODIFY323 fails
 ... trying to match MODIFY299 with RENAME309
 ... END321 fails
  NIL

Language Examples
;; Joe says to Sally:   "Can you give me the salt?"

Command: (EXPLAIN–OBSERVATION '(TALK1 SURFACE–QUESTION
(SPEAKER JOE)
(HEARER SALLY)
(TIME #(TIME 4 4 5 5))
(CONTENT (CAN SALLY (GAVE SALLY JOE SALT))))

                              'UTTER1)
 ... creating node TALK1
 ... searching up from TALK1
 ... creating node DIRECT–REQUEST360
 ... considering TALK1 as S of DIRECT–REQUEST360
 ... checking constraints on DIRECT–REQUEST360
 ... DIRECT–REQUEST360 is okay
 ... searching up from DIRECT–REQUEST360
 ... creating node DIRECT–REQUEST361
 ... searching up from DIRECT–REQUEST361
 ... creating node REQUEST362
 ... searching up from REQUEST362
 ... creating node OBTAIN–BY–ASKING363
 ... considering REQUEST362 as S1 of OBTAIN–BY–ASKING363
 ... checking constraints on OBTAIN–BY–ASKING363
 ... equality constraint violated GAVE = INFORMEDIF
 ... OBTAIN–BY–ASKING363 fails
 ... OBTAIN–BY–ASKING363 fails
 ... creating node FINDOUT–BY–ASKING364
 ... considering REQUEST362 as S1 of FINDOUT–BY–ASKING364
 ... checking constraints on FINDOUT–BY–ASKING364
 ... FINDOUT–BY–ASKING364 is okay
 ... searching up from FINDOUT–BY–ASKING364
 ... creating node FINDOUT–BY–ASKING365
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 ... searching up from FINDOUT–BY–ASKING365
 ... creating node FINDOUT366
 ... searching up from FINDOUT366
 ... creating node END367
 ... searching up from END367
 ... creating node INDIRECT–REQUEST368
 ... considering TALK1 as S of INDIRECT–REQUEST368
 ... checking constraints on INDIRECT–REQUEST368
 ... INDIRECT–REQUEST368 is okay
 ... searching up from INDIRECT–REQUEST368
 ... creating node INDIRECT–REQUEST369
 ... searching up from INDIRECT–REQUEST369
 ... creating node REQUEST370
 ... searching up from REQUEST370
 ... creating node OBTAIN–BY–ASKING371
 ... considering REQUEST370 as S1 of OBTAIN–BY–ASKING371
 ... checking constraints on OBTAIN–BY–ASKING371
 ... OBTAIN–BY–ASKING371 is okay
 ... searching up from OBTAIN–BY–ASKING371
 ... creating node OBTAIN–BY–ASKING372
 ... searching up from OBTAIN–BY–ASKING372
 ... creating node OBTAIN373
 ... searching up from OBTAIN373
 ... merging graph at END367
 ... creating node FINDOUT–BY–ASKING374
 ... considering REQUEST370 as S1 of FINDOUT–BY–ASKING374
 ... checking constraints on FINDOUT–BY–ASKING374
 ... equality constraint violated INFORMEDIF = GAVE
 ... FINDOUT–BY–ASKING374 fails
 ... FINDOUT–BY–ASKING374 fails
  T

;; The statement is ambiguous, as we see:

Command: (DRAW–GRAPH T)
graph UTTER1
END367 NIL
      ?= OBTAIN373

((OBJECT SALT)
(AGENT JOE)
(TIME #(TIME -INF 4 5 +INF)))
(PRETIME #(TIME –INF 4 –INF +INF))

           ?= OBTAIN–BY–ASKING372
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((AGENT JOE) (OBJECT SALT)
(TIME #(TIME –INF 4 –INF +INF))
(PRETIME #(TIME –INF 4 –INF +INF)))

                ?= OBTAIN–BY–ASKING371
((AGENT JOE) (OBJECT SALT)
(TIME #(TIME –INF 4 –INF +INF))
(PRETIME #(TIME –INF 4 –INF +INF)))

                     S1 –> REQUEST370
((REQGOAL (GAVE SALLY JOE SALT))
(HEARER SALLY)
(SPEAKER JOE)
(TIME #(TIME 4 4 5 5)))

                          ?= INDIRECT–REQUEST369
((SPEAKER JOE) (HEARER SALLY)
(REQGOAL (GAVE SALLY JOE SALT))
(TIME #(TIME 4 4 5 5)))

                               ?= INDIRECT–REQUEST368
((SPEAKER JOE)
(HEARER SALLY)
(REQGOAL (GAVE SALLY JOE SALT))
(TIME #(TIME 4 4 5 5)))

                                    S –> TALK1
((CONTENT (CAN SALLY

(GAVE SALLY JOE SALT)))
(HEARER SALLY)
(SPEAKER JOE)

                                                (TIME #(TIME 4 4 5 5)))
      ?= FINDOUT366

((INFO (CAN SALLY (GAVE SALLY JOE SALT)))
(AGENT JOE)
(PRETIME #(TIME -INF 4 -INF +INF))
(TIME #(TIME –INF 4 5 +INF)))

           ?= FINDOUT–BY–ASKING365
((AGENT JOE)
(INFO (CAN SALLY (GAVE SALLY JOE SALT)))
(TIME #(TIME -INF 4 5 +INF))

                                    (PRETIME #(TIME –INF 4 –INF +INF)))
                ?= FINDOUT–BY–ASKING364

((AGENT JOE)
(INFO (CAN SALLY (GAVE SALLY JOE SALT)))
(TIME #(TIME -INF 4 5 +INF))

                                    (PRETIME #(TIME –INF 4 –INF +INF)))
                     S1 –> REQUEST362
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((REQGOAL (INFORMEDIF SALLY JOE
(CAN SALL (GAVE SALLY JOE SALT)))

(HEARER SALLY)
(SPEAKER JOE)
(TIME #(TIME 4 4 5 5)))

                          ?= DIRECT–REQUEST361
((SPEAKER JOE)
(HEARER SALLY)
(REQGOAL (INFORMEDIF SALLY JOE

(CAN SALLY (GAVE SALLY JOE SALT))))
(TIME #(TIME 4 4 5 5)))

                               ?= DIRECT–REQUEST360
((SPEAKER JOE)
(HEARER SALLY)
(REQGOAL (INFORMEDIF SALLY JOE

(CAN SALLY (GAVE SALLY JOE SALT))))
(TIME #(TIME 4 4 5 5)))

                                    S –> TALK1
((CONTENT (CAN SALLY

(GAVE SALLY JOE SALT)))
(HEARER SALLY)
(SPEAKER JOE)

                                                (TIME #(TIME 4 4 5 5)))

;; There are 2 (of 4) alternatives not eliminated:  an attempt to find out if Sally
;;  can give Joe the salt, or an attempt to obtain the salt.

;; Now lets add the fact that at all times, Joe knows if  Sally can give him the salt.

The implementation did not include an explicit Holds
predicate; instead, it included a fuzzy time constraint as
the second argument to fact predicates.  The following
assertion means

∀ t ∈ (–_  –_ +_ +_) .
Holds(t, (knowif Joe (can Sally (gave Sally Joe Salt)))) 

Command: (ADD–FACT '(KNOWIF #(TIME :–INF :–INF :+INF :+INF) JOE
(CAN SALLY (GAVE SALLY JOE SALT)))

  T

;; Repeat the example.   Joe says to Sally:  "Can you give me the salt?"
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Command: (EXPLAIN–OBSERVATION '(TALK2 SURFACE–QUESTION
(SPEAKER JOE) (HEARER SALLY)
(CONTENT (CAN SALLY (GAVE SALLY JOE SALT))))

'UTTER2)
 ... creating node TALK2
 ... searching up from TALK2
 ... creating node DIRECT–REQUEST375
 ... considering TALK2 as S of DIRECT–REQUEST375
 ... checking constraints on DIRECT–REQUEST375
 ... DIRECT–REQUEST375 is okay
 ... searching up from DIRECT–REQUEST375
 ... creating node DIRECT–REQUEST376
 ... searching up from DIRECT–REQUEST376
 ... creating node REQUEST377
 ... searching up from REQUEST377
 ... creating node OBTAIN–BY–ASKING378
 ... considering REQUEST377 as S1 of OBTAIN–BY–ASKING378
 ... checking constraints on OBTAIN–BY–ASKING378
 ... equality constraint violated GAVE = INFORMEDIF
 ... OBTAIN–BY–ASKING378 fails
 ... OBTAIN–BY–ASKING378 fails
 ... creating node FINDOUT–BY–ASKING379
 ... considering REQUEST377 as S1 of FINDOUT–BY–ASKING379
 ... checking constraints on FINDOUT–BY–ASKING379
 ... fact constraint violated (NEVER #(TIME –INF 4 –INF +INF) KNOWIF JOE
(CAN SALLY (GAVE SALLY JOE SALT)))
 ... FINDOUT–BY–ASKING379 fails
 ... REQUEST377 fails
 ... DIRECT–REQUEST376 fails
 ... DIRECT–REQUEST375 fails
 ... creating node INDIRECT–REQUEST380
 ... considering TALK2 as S of INDIRECT–REQUEST380
 ... checking constraints on INDIRECT–REQUEST380
 ... INDIRECT–REQUEST380 is okay
 ... searching up from INDIRECT–REQUEST380
 ... creating node INDIRECT–REQUEST381
 ... searching up from INDIRECT–REQUEST381
 ... creating node REQUEST382
 ... searching up from REQUEST382
 ... creating node OBTAIN–BY–ASKING383
 ... considering REQUEST382 as S1 of OBTAIN–BY–ASKING383
 ... checking constraints on OBTAIN–BY–ASKING383
 ... OBTAIN–BY–ASKING383 is okay
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 ... searching up from OBTAIN–BY–ASKING383
 ... creating node OBTAIN–BY–ASKING384
 ... searching up from OBTAIN–BY–ASKING384
 ... creating node OBTAIN385
 ... searching up from OBTAIN385
 ... creating node END386
 ... searching up from END386
 ... creating node FINDOUT–BY–ASKING387
 ... considering REQUEST382 as S1 of FINDOUT–BY–ASKING387
 ... checking constraints on FINDOUT–BY–ASKING387
 ... equality constraint violated INFORMEDIF = GAVE
 ... FINDOUT–BY–ASKING387 fails
 ... FINDOUT–BY–ASKING387 fails
  T

;; The only interpretation is the indirect request.

Command: (DRAW–GRAPH T)
graph UTTER2
      ?= OBTAIN385

((OBJECT SALT)
(AGENT JOE)
(TIME #(TIME -INF 4 5 +INF)))
(PRETIME #(TIME –INF 4 –INF +INF))

           ?= OBTAIN–BY–ASKING384
((AGENT JOE) (OBJECT SALT)
(TIME #(TIME –INF 4 –INF +INF))
(PRETIME #(TIME –INF 4 –INF +INF)))

                ?= OBTAIN–BY–ASKING383
((AGENT JOE) (OBJECT SALT)
(TIME #(TIME –INF 4 –INF +INF))
(PRETIME #(TIME –INF 4 –INF +INF)))

                     S1 –> REQUEST382
((REQGOAL (GAVE SALLY JOE SALT))
(HEARER SALLY)
(SPEAKER JOE)
(TIME #(TIME 4 4 5 5)))

                          ?= INDIRECT–REQUEST381
((SPEAKER JOE) (HEARER SALLY)
(REQGOAL (GAVE SALLY JOE SALT))
(TIME #(TIME 4 4 5 5)))

                               ?= INDIRECT–REQUEST380
((SPEAKER JOE)
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(HEARER SALLY)
(REQGOAL (GAVE SALLY JOE SALT))
(TIME #(TIME 4 4 5 5)))

                                    S –> TALK2
((CONTENT (CAN SALLY

(GAVE SALLY JOE SALT)))
(HEARER SALLY)
(SPEAKER JOE)

                                                (TIME #(TIME 4 4 5 5)))
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Appendix F
Details of Correctness

Proof of Explain
The key to the correctness of explain – the fact that all possible interpretations

are considered – lies in the interaction of the redundant subroutine and the definition
of the set Uses.  Redundant blocks consideration of uses of an event which are
covered by other, more apt uses.  For example, if the primary event to be explained is
of type MakeMarinara, the use (MakeSauce, s2, MakePastaDish) is redundant, while
if the primary event to be explained is of type MakeSauce, the use (MakeMarinara,
s2, MakeSpaghettiMarinara) is redundant.

Following is the statement which must be shown to hold in order for explain
to be correct.

Statement of the Problem
Consider the invocation

explain( E0, D, ∅, true, E0)

For every (event type) Eu such that Eu has an r-direct component of type Ec which is
compatible with E0, and for every basic specialization* Eb of Eu whose instances
could possibly have an r-component of E0:

the algorithm creates a node Ea(na) such that Ea abstracts* Eb, whose r-
component Ea(na) is a node of type compatible with E0.

Multiple Inheritance Proof
By inspection we see that explain does create a node Ec(nc), which holds one of the
following relations to E0(n0).
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E0(n0)

Ec(nc)

= * or

Es(ns)

Ec(nc)

= * where 

E0

Es

figure F.1:  Relation of Ec(nc) to E0(n0)

If the component/use inference step performs a recursive call for use (Ec, r, Eu), then
the condition is satisfied by Eu(nu) itself.  If this doesn't occur, then the redundant
test must have blocked the use.  So consider the ways in which redundant  could be
satisfied.

Case 1.  (Ec, r, Eu) abstracts a use for a type which abstracts* primary.  There must
be a least abstract such type, call it E1, with use (E1, r, Ed).  This is illustrated below.

E0

E1

Ec

Eu

Ed

Ea

Eb

r

r

figure F.2:  Case 1

When explain visited E1(n1) it must have considered all r-uses of E1, since by
inspection redundant could not block them.  Now we claim that there are r-uses
which fulfil the condition.
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Let Eb be the specialization of Eu in question.  Consider the generation of Uses.  Let
Ea be the most general abstraction* of Eb such that:

i.  All specializations* of Ea could have an r-th component of type E1

ii.  (E1, r, Ea) ∈ Uα

By definition of Ea, (E1, r, Ea) appears in Uses.  Thus node Ea(na), with roleval
(r, n1), is exactly the node needed for the proof.

Case 2.  (Ec, r, Eu) specializes a use for a type which specializes* primary.  There
must be a most general such type, call it E1, with use (E1, r, Ea).  This is illustrated
below.

Ec

E1

E0

Ea

Eu

Eb

r

r

figure F.3:  Case 2

By inspection we see that the redundant test cannot block this use, so node Ea(na) is
the desired node, because Eu abstracts* Eb and Ea abstracts* Eu.

Case 3.  (Ec, r, Eu) specializes a use for a type which abstracts E0 and Ec does not
abstract* or specialize* E0.  There must be a least general such type, call it E1, with
use (E1, r, Ed).  Let E2 be the least general abstraction* of E0 which has a use (E2, r,
Ef) which specializes* (E1, r, Ed).  (Possibly E2=E1.)  This is illustrated below.
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figure F.4:  Case 3

Let Ea be the most general abstraction* of Eb such that

i.  All specializations* of Ea could possibly have an r-th component of
type E2.

ii.  (E2, r, Ea) ∈ Uα

By definition of Ea, (E2, r, Ea) appears in Uses.  By inspection we see that this use
cannot be blocked by redundant, so Ea(na), with roleval (r, n2), is the desired node.

Single Inheritance Proof
Consider the single-inheritance version of redundant.  There are two conditions
under which redundant returns true:

Case 1.    (etype, r, utype) abstracts a use for some member of visited.  Because
abstractions of primary are considered before specializations of primary, it must be
the case that (etype, r, utype) abstracts a use for a type which abstracts* primary:
that is, the first case above.
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Case 2.    (etype, r, utype) specializes a use for some member of visited.  Because
visited is grown depth first, it must be the case that (etype, r, utype) specializes a use
for a type which specializes* primary:  that is, the second case above.

This completes the details of the proof of correctness of explain.
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