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Abstract: This paper revises and expands upon a paper presented by two of the present authors at AAAI 1986 
[Vilain & Kautz 1986].  As with the original, this revised document considers computational aspects of interval-
based and point-based temporal representations.  Computing the consequences of temporal assertions is 
shown to be computationally intractable in the interval-based representation, but not in the point-based one.  
However, a fragment of the interval language can be expressed using the point language and benefits from the 
tractability of the latter.  The present paper departs from the original primarily in correcting claims made there 
about the point algebra, and in presenting some closely related results of van Beek [1989]. 

The representation of time has been a recurring concern 
of Artificial Intelligence researchers.  Many represen-
tation schemes have been proposed for temporal 
reasoning;  of these, one of the most attractive is James 
Allen's algebra of temporal intervals [Allen 1983].  This 
representation scheme is particularly appealing for its 
simplicity and for its ease of implementation with 
constraint propagation algorithms. Reasoners based on 
this algebra have been put to use in several ways.   For 
example, the planning system of Allen and Koomen 
[1983] relies heavily on the temporal algebra to perform 
reasoning about the ordering of actions.  Elegant 
approaches such as this one may be compromised, 
however, by computational characteristics of the interval 
algebra.  This paper concerns itself with the 
computational aspects of Allen's algebra, and of two 
variants of a simpler algebra of time points. 

Our perspective here is primarily computation-theoretic.  
We approach the problem of temporal representation by 
asking questions of complexity and tractability.  In this 
light, this paper establishes some formal results about 
these temporal algebras.  In brief these results are: 

• Determining consistency of statements in the 
interval algebra is NP-hard, as is determining the 
deductive closure of these statements.  Allen's 
polynomial-time constraint propagation algorithm 
for deductive closure is thus incomplete. 

• We define a restricted form of the interval 
algebra, concerned with measuring the relative 
durations of events.  This algebra can be 
formulated in terms of a time point algebra 
without disequality (≠).  Allen's propagation 
algorithm is sound and complete for this 
fragment, and operates in O(n3) time and O(n2) 
space. 

• We also define a broader interval algebra 
fragment, corresponding to the time point algebra 
with ≠.  A variant propagation algorithm performs 
closure in this fragment in O(n4) time. 

Throughout the paper, we consider how these formal 
results affect practical Artificial Intelligence programs. 

The Interval Algebra 
Allen's interval algebra has been described in detail in 
[Allen 1983].  In brief, the elements of the algebra are 
relations that may exist between intervals of time.  
Because the algebra allows for indefiniteness in 
temporal relations, it admits many possible relations 
between intervals (213 in fact).  But all of these relations 
can be expressed as vectors of definite simple relations, 
of which there are only thirteen.  The thirteen simple 
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Figure 1:  Simple Interval Relations 
 



relations, whose illustration appears in Figure 1, 
precisely characterize the relative starting and ending 
points of two temporal intervals.  If the relation between 
two intervals is completely defined, then it can be 
exactly described with a simple relation.1  Alternatively, 
vectors of simple relations introduce indefiniteness in 
the description of how two temporal intervals relate.  
Vectors are interpreted as denoting the set of possible 
simple relations that hold between two intervals.  
Informally, a vector of simple relations can be 
understood as the “disjunction” of its constituent 
relations. 
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Figure 3:  Multiplying Relation Vectors 
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Figure 2:  Simple Relation and Relation Vector 
 

Two examples will serve to clarify these distinctions (see 
Figure 2).  Consider the simple  relations BEFORE and 
AFTER:  they hold  between intervals that strictly follow 
each other, without  overlapping or meeting.  The two 
differ by the order of their  arguments:  today John ate 
breakfast BEFORE he ate lunch,  and he ate lunch 
AFTER he ate breakfast.  To illustrate relation vectors, 
consider the vector (BEFORE MEETS OVERLAPS).  It 
holds between two intervals whose starting points strictly 
precede each other, and whose ending points strictly 
precede each other.  The relation between the ending 
point of the first interval and the starting point of the 
second is left ambiguous. For instance, say this morning 
John started reading the paper before starting breakfast, 
and he finished the paper before his last sip of coffee.  If 
we didn't know whether he was done with the paper 
before starting his coffee, at the same time as he started 
it, or after, we would then have the paper reading 
(BEFORE MEETS OVERLAPS) the coffee drinking. 

Returning to our formal discussion, we note that the 
interval algebra is principally defined in terms of vectors. 
Although simple relations are an integral part of the 
formalism, they figure primarily as a convenient way of 
notating vector relations.  The mathematical operations 
defined over the algebra are given in terms of vectors;  
in a reasoner built on the temporal algebra, all user 
assertions are made with vectors. 

Two operations, an addition and a multiplication, are 
defined over vectors in the interval algebra.  Given two 
different vectors describing the relation between the 
same pair of intervals, the addition operation “intersects” 
these vectors to provide the least restrictive relation that 

                                                 
1   In fact, these thirteen simple relations can be in turn 

precisely axiomatized using only one truly primitive relation.  
For details, see [Allen & Hayes, 1985]. 

the two vectors together admit.  The need to add two 
vectors arises from situations where one has several 
independent measures of the relation of two intervals.  
These measures are combined by summing the relation 
vectors for the measures.  For example, say the relation 
between intervals A and B has been derived by two valid 
measures as being both 

V1 = (BEFORE MEETS OVERLAPS) 
V2 = (OVERLAPS STARTS DURING). 

To find the relation between A and B, that is implied by 
V1 and V2, the two vectors are summed: 

V1 + V2 = (OVERLAPS). 

Algorithmically, the sum of two vectors is computed by 
finding their common constituent simple relations. 

Multiplication, or vector composition, is defined between 
pairs of vectors that relate three intervals A, B, and C.  
More precisely, if V1 relates intervals A and B, and V2 
relates B and C, the product of V1 and V2 is the least 
restrictive relation between A and C that is permitted by 
V1 and V2.  Consider, for example, the situation in 
Figure 3.  If we have 

V1 = (BEFORE MEETS OVERLAPS) 
V2 = (BEFORE MEETS) 

then the product of V1 and V2 is 

V1 x V2 = (BEFORE) 

As with addition, the multiplication of two vectors is 
computed by inspecting their constituent simple 
relations.  The constituents are pairwise multiplied by 
following a simplified multiplication table, and the results 
are combined to produce the product of the two vectors.  
See [Allen 1983a] for details. 

Determining Closure in the 
Interval Algebra 

To an application reasoning with Allen's interval algebra, 
the primary operation of interest is determining the 
closure of a set of temporal assertions. This can be 
understood as a deductive closure.  Given as premise a 
set of temporal assertions, the closure consists of all the 
temporal relations which follow from the premises. 



To formalize this notion, we need to turn to some model-
theoretic considerations.  For our purposes, temporal 
intervals can be modelled as pairs of distinct numbers 
on the real line.  (Other axiomatizations exist:  the 
rational numbers [Ladkin 1987] or the integers [Allen & 

Hayes 1985], but these distinctions are not crucial here.)  
Given a set of intervals I with assertions relating the 
intervals in I, an interpretation of these temporal 
relations is thus a mapping from each interval in I to a 
consistent  model, i.e., to some pair of reals on the time 
line which is consistent with the premise assertions. 

 
{ Table is a two-dimensional array indexed by 

intervals, in which Table[i,j] holds the relation 
between intervals i and j.  Table[i,j] is initialized to 
the additive identity vector consisting of all thirteen 
simple relations;  except for Table[i,i], which is 
intialized to (EQUALS). 

 Queue is a FIFO data structure that keeps track of 
pairs of intervals whose relation has been 
changed. 

Computing the closure of the premise relations on I 
consists of determining the minimal relation vectors 
between each i and j in I.  Such a minimal vector 
between i and j consists only of the consistent simple 
relations of the premise vector, i.e., those which are 
satisfied by some interpretation of the premises.  We 
can think of this as discarding the inconsistent simple 
relations from all the premise assertions on I.  See [van 
Beek 1989] for details. 

 Intervals is a list of all intervals about which 
assertions have been made. } 

To Add Ri,j 
 { Ri,j is a relation being asserted between i and j. } 

In Allen's model, closure is computed with a constraint 
propagation algorithm.  The operation of this forward-
chaining algorithm is driven by a queue.  Every time the 
relation between two intervals i and j is changed, the 
pair <i,j> is placed on the queue.  The closure algorithm, 
shown in Figure 4, is initiated by calling procedure 
Close, and operates by removing interval pairs from the 
queue.  For every pair <i,j> that it removes, the 
algorithm determines whether the relation between i and 
j can be used to constrain the relation between i and 
other intervals in the database, or between j and these 
other intervals. If a new relation can be successfully 
constrained, then the pair of intervals that it relates is in 
turn placed on the queue.  The process terminates when 
no more relations can be constrained. 

 begin 
  Old ♦ Table[i,j]; 
  Table[i,j] ♦ Table[i,j] + Ri,j; 
  if Table[i,j] ≠ Old  
   then Place pair <i,j> on fifo Queue; 
  Intervals ♦ Intervals ≈ {i,j}; 
 end; 

To Close 
 { Compute the closure of assertions added to the 

 database. } 
 while Queue is not empty do 
  begin 
   Get next <i,j> from Queue; 
   Propagate(i,j); 

As Allen suggests [1983a], this constraint propagation 
algorithm runs to completion in time polynomial with the 
number of intervals in the temporal database. He 
provides an estimate of O(n2) calls to the Propagate 
procedure.  A more fine-grained analysis reveals that 
when the algorithm runs to completion, it will have 
performed O(n3) multiplications and additions of 
temporal relation vectors. 

  end; 

To Propagate(i, j) 
 { Propagates the change to the relation between i 

 and j to all  other intervals. } 
 for each interval k in Intervals do 
  begin 
   Temp ♦ Table[i,k] + (Table[i,j] x Table[j,k]); 
   if Temp = � { � is the inconsistent vector. } 
    then Signal contradiction; 
   if Table[i,k] ≠  Temp 
    then Place pair <i,k> on Queue; 
   Table[i,k] ♦ Temp; 
   Temp ♦ Table[k,j] + (Table[k,i] x Table[i,j]); 
   if Temp = � 
    then Signal contradiction; 
   if Table[k,j] ≠  Temp 
    then Place pair <k,j> on Queue; 
   Table[k,j] ♦ Temp; 

Theorem 1:  Let I be a set of n intervals about which 
m assertions have been added with the Add 
procedure.  When invoked, the Close procedure will 
run to completion in O(n3) time. 

Proof:  A pair of intervals <i,j> is entered on Queue 
when its relation, stored in Table[i,j], is non-trivially 
updated. First note that no more than O(n2) pairs of 
intervals <i,j> are ever entered onto the queue.  
This is because there are only n2 relations possible 
between the n intervals, and because each relation 
can only be non-trivially updated a constant number 
of times.  This constant bound arises because 
every non-trivial update by definition removes at 
least 1 simple relation from the vector encoding the 
relation between i and j.  Since there are only 13 
such relations, <i,j> can only be updated at most 13 
times. 

  end; 

 Figure 4:Constraint propagation algorithm. 
 

Next, note that every time a pair <i,j>  is removed 
from Queue for updating, the algorithm performs 
O(n) vector operations.  These operations occur in 



the Propagate procedure when comparing the 
relation between intervals i and j to that between j 
and k, and also to that between k and i.  There are 
n such k, and each set of comparisons requires 2 
vector additions and 2 vector multiplications, 
leading to an overall cost of 2n vector additions and 
2n vector multiplications to update <i,j>. 

To complete the proof, we see that each of the 
O(n2) updates required for computing closure in 
turn requires O(n) computation, leading to an 
overall complexity of O(n3) vector operations. 

The vector operations can be considered here to take 
constant time.  By encoding vectors as bit strings, 
addition can be performed with a 13-bit integer AND 
operation. For multiplication, the complexity is actually 
O(|V1| x |V2|), where |V1| and |V2| are the “lengths” of the 
two vectors to be multiplied (i.e., the number of simple 
constituents in each vector).  Since vectors contain at 
most 13 simple constituents, the complexity of 
multiplication is bounded, and the idealization of 
multiplication as operating in constant time is 
acceptable. 

Note that the polynomial time characterization of the 
constraint propagation algorithm of Figure 4 is 
somewhat misleading.  Indeed, Allen [1983] 
demonstrates that the algorithm is sound, in the sense 
that it never infers an invalid consequence of a set of 
assertions. However, Allen also shows that the algorithm 
is incomplete:  he produces an example in which the 
algorithm does not make all the inferences that follow 
from a set of assertions.  He suggests that computing 
the closure of a set of temporal assertions might only be 
possible in exponential time.  Regrettably, this appears 
to be the case.  As we demonstrate in the following 
paragraphs, computing closure in the interval algebra is 
an NP-complete problem. 

Intractability of the Interval 
Algebra 

To demonstrate that computing the closure of asser-
tions is NP-complete, we first show that determining the 
consistency (or satisfiability) of a set of assertions is NP-
hard.  We then extend this to NP-complete and show 
the consistency and closure problems to be equivalent. 

Theorem 2:  Determining the satisfiability of a set of 
assertions in the interval algebra is NP-hard. 

Proof (Due to Kautz):  The theorem is proven by 
reducing the 3-clause satisfiability problem (or 
3-SAT) to the problem of determining satisfiability of 
assertions in the interval algebra.  To do this, we 
construct a (computationally trivial) mapping 
between a formula in 3-SAT form2 and an 
equivalent encoding of the formula in the interval 
algebra.  Conceptually, this is done by creating 
three groups of intervals.  One group enforces the 

                                                 
2  3-SAT  formulæ are of form (A Δ B Δ C) �…� (X Δ Y Δ  Z) 

law of excluded middles;  the second one encodes 
the literals of the formula;  and the third encodes 
the clauses of the formula. 

The first group consists of the single interval 
middle.  This interval determines the truth 
assignments for all other intervals:  those that fall 
before middle correspond to false terms, and those 
that fall after correspond to true terms.   

Turning to the second group of intervals, we create 
for each literal P in the formula, and its negation ¬P, 
a pair of intervals, P and notP.  These intervals are 
then related to  middle by creating the middle-
excluding interval PXnotP (for P excludes ¬P), and 
asserting: 

 middle (DURING) PXnotP 
 P (MEETS MET-BY) PXnotP 
 notP (MEETS MET-BY) PXnotP 
 P (BEFORE AFTER) notP 

The effect of the second and third assertions is to 
cause P and notP to either meet or be met by 
PXnotP.   The fourth assertion makes this choice 
mutually exclusive.  Since any interval preceding 
middle is taken to be false, the first assertion 
ensures the falseness of whichever of P and notP 
ends up meeting PXnotP.  The other of the two will 
be met by PXnotP, and hence follow middle and 
be true. 

The encoding of the formula's clauses is handled by 
a third group of intervals, and proceeds as follows.  
For each clause P Δ Q Δ R, we create a clausal 
interval PorQorR which is used to impose a truth 
assignment on the literals of the disjunct.  The key 
to this encoding is that no more than two of the 
literals' intervals are allowed to precede middle 
(and be false).  This guarantees that one of the 
literals' intervals must follow middle, and hence be 
true, and hence cause the clause to be satisfied.  
This encoding is accomplished through place-
holder intervals forP, forQ, and forR, one set of 
which is generated for each clause.  The following 
assertions are made of the place-holders. 

Place-holders contain their literals: 
 forP (CONTAINS) P 
 forQ (CONTAINS) Q 
 forR (CONTAINS) R 

Place-holders must be true or false: 
 forP (BEFORE AFTER) middle 
 forQ (BEFORE AFTER) middle 
 forR (BEFORE AFTER) middle 

At most two false place-holder positions: 
 forP (MEETS STARTS AFTER) PorQorR 
 forQ (MEETS STARTS AFTER) PorQorR 
 forR (MEETS STARTS AFTER) PorQorR 

Placement of the clausal interval: 
 PorQorR (CONTAINS) middle 

Place-holders don't overlap: 



 forP (BEFORE AFTER MEETS MET-BY) forQ 
 forQ (BEFORE AFTER MEETS MET-BY) forR 
 forR (BEFORE AFTER MEETS MET-BY) forP 

The first group of assertions relates the place-
holders to their literals.  The second, third, and 
fourth groups of assertions ensures that a place-
holder interval can only be in one of two positions 
on the false side of middle.  The fifth group makes 
the place-holders mutually exclusive, and 
guarantees that only one of the place-holders can 
be in each of the allowed false positions. 

To complete the proof, we note that the interval 
encoding of the 3–SAT formula can clearly be 
performed in time polynomial in the length of the 
formula.  From the preceding discussion, it also 
follows that the formula is satisfiable just when its 
encoding as interval assertions is satisfiable too.  
Since 3-SAT is NP-complete, it follows that 
determining satisfiability of assertions in the interval 
algebra is in turn NP-hard. 

This NP-hardness result can be strengthened somewhat 
to NP-completeness by the following proposition. 

Theorem 3:  Determining the satisfiability of a set of 
assertions in the interval algebra is in NP, and is 
hence NP-complete. 

Proof:  To show that satisfiability of a set of interval 
assertions is in NP, we only need show that we can 
guess an interpretation for the assertions and then 
verify it in polynomial time.  To construct the inter-
pretation, we just choose a random ordering of the 
intervals' endpoints, possibly making some of them 
the same.  To verify the interpretation we just check 
that the original assertions are satisfied by the 
ordering.  If we started with n intervals, there will be 
O(n2) assertions to check, each of which is veri-
fiable in constant time.  Interval satisfiability is thus 
in NP, and being NP-hard, it is thus NP-complete. 

The following theorem extends the NP-completeness 
result for the problem of determining satisfiability of 
assertions in the interval algebra to the problem of 
determining closure of these assertions. 

Theorem 4:  The problems of determining the 
satisfiability of assertions in the interval algebra and 
determining their closure are equivalent, in that 
there are polynomial-time mappings between them. 

Proof:  First we show that determining closure 
follows readily from determining consistency.  To do 
so, assume the existence of an oracle for 
determining the consistency of a set of assertions in 
the interval algebra.  To determine the closure of 
the assertions, we run the oracle thirteen times for 
each of the O(n2) pairs <i,j> of intervals mentioned 
in the assertions.  Specifically, each time we run the 
oracle on a pair <i,j>, we provide the oracle with the 
original set of assertions and the additional 
assertion i (R) j, where R is one of the thirteen 
simple relations.  The relation vector that holds 

between i and j is the one containing those simple 
relations that the oracle didn't reject. 

To show that determining consistency follows from 
determining closure, assume the existence of a 
closure algorithm.  To see if a set of assertions is 
consistent, run the algorithm, and inspect each of 
the O(n2) relations between the n intervals 
mentioned in the assertions.  The database is 
inconsistent if any of these relations is the 
inconsistent vector:  this is the vector composed of 
no constituent simple relations. 

The three preceding theorems demonstrate that compu-
ting the closure of assertions in the interval algebra is 
NP-complete.  This result casts great doubts on the 
computational tractability of the algebra, as no NP-
complete problem is known to be solvable in less than 
exponential time. 

Consequences of Intractability 
Several authors have described exponential-time 
algorithms that compute the closure of assertions in the 
interval algebra, or some subset thereof.  Valdés-Pérez 
[1987] proposes a heuristically pruned algorithm which 
is sound and complete for the full algebra.  The 
algorithm is based on analysis of set-theoretic 
constructions.  Malik & Binford [1983] can determine 
closure for a fraction of the interval algebra with the 
(worst-case) exponential Simplex algorithm.  As we shall 
see below, the fragment that they consider is actually 
tractable, and the expected performance of Simplex 
would be polynomial for their application. 

Even though the interval algebra is intractable, it isn't 
necessarily useless.  Indeed, it is almost a truism of 
Artificial Intelligence that all interesting problems are 
computationally at least NP-complete!  There are 
several strategies that can be adopted to put the algebra 
to work in practical systems. The first is to cluster 
intervals into small self-contained groups, with limited 
interconnection between the clusters.  Within a cluster, 
the asymptotically exponential performance of a 
complete temporal reasoner need not be noticeably 
poor.  This is in fact the approach taken by Malik and 
Binford to manage the performance of their Simplex-
based system.  More recently, Koomen [1989] has 
developed algorithms for automatically clustering 
intervals according to Allen's reference interval strategy.  
Unfortunately, clustering techniques such as these are 
most applicable only in domains with little global 
interconnectivity between time intervals. 

Another overall strategy is to stick to the polynomial-time 
constraint propagation closure algorithm, and accept its 
incompleteness. This is acceptable for applications 
which use a temporal database to notate the relations 
between events, but don't particularly require much 
inference from the temporal reasoner.  For applications 
which make heavy use of temporal reasoning, however, 
this may not be an option. 

Restricting the Interval Algebra 



An alternative approach to containing the computational 
cost of interval reasoning is to consider fragments of the 
full interval algebra for which closure is tractable.  These 
fragments may be naturally matched to certain 
problems. 
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One fragment of which this is true arises in the context 
of relating the duration of events observed to occur in 
the world.  This class of problems imposes a significant 
reduction in the degree of representational ambiguity 
that is required of the interval algebra.  Indeed, 
assuming that one is simultaneously observing several 
events as they occur, representational ambiguity only 
arises as a result of one's inability to resolve the exact 
duration of each event.  In terms of the interval algebra, 
this corresponds to an inability to resolve the relative 
position of two intervals' endpoints.  Returning to an 
earlier example, while observing John eating his 
breakfast, we might have clearly seen him opening his 
newspaper before starting his coffee.  However, we 
might not be able to tell whether he was done reading 
before he started his coffee, along with starting it, or 
afterwards (see Figure 2). 

Figure 5:  Models of point relations. 
 

Viewing measurement uncertainty of this type in terms 
of interval endpoint uncertainty allows us to produce an 
algebraic encoding of the phenomenon.  This kind of 
encoding is especially of interest in the context of 
qualitative reasoning, as qualitative applications favor 
these kind of algebraic methods.  We should also note 
that in formalizing the encoding, we must ensure that it 
has the property that uncertainty be continuous in the 
following sense.  Although we can place upper and 
lower bounds on when we may have observed an event 
to start or end, we typically can not exclude any time 
within that range as a possible start or end point.  For 
example, we can't exclude John's coffee drinking from 
starting at the same time as his paper reading finishes.  
As we shall see below, the class of interval relations that 
display this continuous endpoint uncertainty has a 
tractable closure algorithm.  Before proving this result, 
however, we first need to consider time points per se. 

Time Point Algebras 
For our purposes, time points can be modelled by the 
real numbers, and their relations can be entirely 
expressed as inequalities.  As with intervals these 
relations can be decomposed into disjunctions of simple 
relations, which in this case number three:  <, =, and >.  
Seven consistent vectors can then be formed :  (<), (=), 
(>), (< =), (= >), (< = >), and (< >).  Abusing notation, we 
will refer to these vectors as <, =, >, ≤, ≥, ?, and ≠ 
respectively.  Again, as with intervals, the algebra of 
points supports an addition and a multiplication.  These 
operations are defined by the following two tables, in 
which the 0 entry represents the inconsistent vector. 

+ < ≤ > ≥ = ≠ ? 
< < < 0 0 0 < < 
≤ < ≤ 0 = = < ≤ 
> 0 0 > > 0 > > 
≥ 0 = > ≥ = > ≥ 
= 0 = 0 = = 0 = 

≠ < < > > 0 ≠ ≠ 
? < ≤ > ≥ = ≠ ? 

 
x < ≤ > ≥ = ≠ ? 
< < < ? ? < ? ? 
≤ < ≤ ? ? ≤ ? ? 
> ? ? > > > ? ? 
≥ ? ? > ≥ ≥ ? ? 
= < ≤ > ≥ = ≠ ? 
≠ ? ? ? ? ≠ ? ? 
? ? ? ? ? ? ? ? 

As with the interval algebra, addition is used to combine 
two different measures of the relation of two points. 
Multiplication is used to determine the relation between 
two points A and B, given the relations between each of 
A and B and some intermediate point C. 

We can define a property of a subset of the time point 
algebra which is of particular interest in formalizing the 
restricted interval algebra presented above.  We say 
that the relation between two time points is continuous if 
the set of models that it admits for each time point, as a 
function of the other, is convex.  The models of a time 
point are a set of real numbers, and for  this set to be 
convex, the range of numbers between any two models 
must also all be models.  For example, if we have A ≤ B, 
the models of A are all the real numbers less than or 
equal to B.  Take any two of these models, calling them 
µ1 and µ2.  The range of real numbers between them 
are also all less than or equal to B, and are hence also 
models of A.  In contrast, if we have A ≠ B, A's models 
are all the reals except B:  { x | x < B } ≈ { x | x > B }  This 
set is not convex, since one can pick two models of A, 
µ1=B-∂ and µ2=B+∂ for example, which span the gap 
imposed by B's exclusion.  Since B is a real number in 
the range between µ1 and µ2, but is not a model of A, 
the models of A are not convex .  See Figure 5. 

This property of continuity is true of all relations in the 
point algebra except ≠.  What is more, the point algebra 
restricted to continuous relations is in turn an algebra 
with a well-defined addition and multiplication.  We will 
refer to this algebra as the continuous point algebra. 

Continuous Endpoint Uncertainty 



Having developed these properties of time points, we 
can now return to formalizing the restricted interval 
algebra we discussed above.  Recall that we were 
interested in interval relations that could be modelled by 
a continuous uncertainty in the relationship of their 
endpoints.  This property can in fact be characterized in 
terms of continuous point relations.  To this extent, we 
define the continuous endpoint algebra as that subset of 
the interval algebra which can be entirely encoded as 
conjunctions of continuous time point relations between 
the endpoints of intervals. 

This algebra includes relations such as the vector 
(BEFORE MEETS OVERLAPS) from the coffee and 
newspaper example of Figure 2.  The relation between 
these intervals is described by the conjunction of the 
following point relations, in which (e.g.) coffee- and 
coffee+ denote the start point and end point of interval 
coffee respectively. 

paper - < paper + 
paper - < coffee - 
paper + ? coffee - 
paper + < coffee + 
coffee - < coffee + 

Interval relations precluded from the restricted algebra 
include, for example (BEFORE OVERLAPS).  Indeed, 
encoding (BEFORE OVERLAPS) in terms of interval 
endpoints requires the non-continuous point relation ≠: 

(BEFORE OVERLAPS) 
 +  λ x,y. (x - < x +)�(x - < y -)�(x + ≠ y -)� 
  (x + < y +)�(y - < y +) 

Note that this restriction on what can be expressed with 
continuous endpoint uncertainty matches the intuitive 
requirements we gave above for our encoding of 
measurement uncertainty. 

Another class of interval relations that lie outside the 
scope of the continuous endpoint algebra are the truly 
disjunctive relations such as(BEFORE AFTER).  This 
particular example can not even be encoded as a 
conjunction of non-continuous point relations.  Indeed to 
model (BEFORE AFTER) with interval endpoints 
requires explicit disjunction: 

(BEFORE AFTER) 
 +  λ x,y. (x + < y -)…Δ…(x - > y +) 

The proof of NP-hardness for deductive closure in the 
interval algebra was critically dependent on just such 
disjunctions of interval relations as these.  Since the 
continuous endpoint algebra precludes all but the 
simplest forms of disjunction, it is natural to ask whether 
computing closure in the continuous endpoint algebra is 
in fact tractable.  As we alluded to above, the following 
theorem is true. 

Theorem 5:  The constraint propagation algorithm of 
Figure 4 computes the closure of assertions in the 
continuous endpoint algebra. 

A proof of this theorem appears in [van Beek 1989] and 
is elaborated in [van Beek & Cohen 1989].  What follows 
is a model-theoretic variant of the proof. 

Given a set of intervals I, whose relations are initially 
described by a set of assertions R, we need to show that 
the algorithm computes the minimal relation between all 
i and j in I, given R.  The proof notes that the intervals in 
I and the relations computed to hold between them form 
a graph G, in which the vertices are intervals and the 
arcs are relations.  Underlying the proof is a notion of 
graph consistency adapted from Freuder [1982].  We 
say that an interval graph G is k-consistent if given any 
consistent assignment of k-1 of its intervals to pairs of 
real numbers, there is a consistent assign-ment of any 
kth interval.   The first assignment is an interpretation of 
Gk-1, the subgraph of G defined by the k-1 intervals, and 
the second is an interpretation of Gk, the subgraph 
defined by all k intervals.  Continuing, we define strong 
k-consistency as j-consistency for all j≤k. 

An important consequence of this definition is that any 
strongly k-consistent graph has the following property.  
Take Gk, a k-sized subgraph of G containing intervals i 
and j.  Then for any model of i and any model of j which 
are consistent with the intervals' relation in Gk, there is 
an interpretation of Gk which maps i and j to these 
models.  Now, given any simple relation holding 
between i and j, we can always construct models of i 
and j which satisfy the relation, and which thus appear in 
some interpretation of Gk.  In the case where k=n, the 
size of G, this is equivalent to saying that any simple 
relation on any arc between any two intervals in G 
appears in some interpretation of G.  That is, if G is 
strongly n-consistent, then the relations holding between 
its intervals are minimal and closure of its premises has 
been computed. 

We now use this property to prove Theorem 5, by 
showing that the constraint propagation algorithm 
computes k-consistency on an interval graph of size n, 
for all k≤n. 

Proof (of theorem 5):  The proof is by induction on 
the size of subgraphs of an interval graph G. 

Basis:  k=1, 2, or 3.  It is clear that for k=1 (single 
intervals) or k=2 (pairs of intervals), any labelling of 
the arcs is k-consistent.  For k=3, we note that 
Mackworth [1977] and Montanari [1974] have 
shown that algorithms equivalent to that in Figure 4 
achieve 3-consistency. 

Induction:  Assuming the graph is strongly 
(k-1)-consistent, we need to show that it is also 
k-consistent for any k such that 4≤k≤n.  That is, 
given an interpretation for Gk-1, a (k-1)-sized 
subgraph of G, and given any interval k not in Gk-1,  
we need to find a model of k that yields an interpre-



tation for Gk, the graph produced by expanding Gk-1 
to include k. 
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To do so, we note that the interpretation we were 
given for Gk-1 assigns a model to each of its consti-
tuent intervals i .  Given such a model, the relation 
between i and k constrains the possible models of k 
to forming a set in ←2.  The set is in ←2 because 
the models of k are pairs of reals.  To produce our 
desired model of k  , we need to show that all the 
constraint sets have some model in common. 

Figure 6:  3- but not 4-Consistent Points 
 

We proceed by noting that the relation between any 
i in Gk-1 and k is from the continuous endpoint 
algebra, and so encodes one or more continuous 
point relations between the intervals' endpoints.  
The models of k induced by each such endpoint 
relation Ri±,k± are thus convex sets.  For example, 
the endpoint relation i + < k - induces the following 
convex set of models for k : 

{ <x,y>  � ←2  | x > i + and y � ← } 

The models of k being convex allows us to apply a 
theorem of linear programming due to Helly 
[Chvátal 1983].  Stating the theorem, let F be a 
finite family of at least n+1 convex sets in ←n, 
where every n+1 sets in F have a common point (in 
←n).  Then all sets in F have a common point. 

The model sets for k are in ←2 (i.e., n=2 in Helly's 
theorem), so to prove Theorem 5 we only need 
show that any three model sets for k have a 
common point.  This is equivalent to showing that 
their three corresponding endpoint constraints are 
consistent.  There are two cases depending on 
whether one of the constraint sets corresponds to k 
- < k +. 

Case 1:  The three constraints have form i± Ri±,k- k 
-, k - < k +, and k + Rk+,j±  j±.  Note that these three 
constraints define a subgraph of size 3 which is 
3-consistent by virtue of having run the algorithm.  
Hence the three constraints are consistent and 
admit some common model for k. 

Case 2:  The constraints are all of form i± Ri±,k± k ±.   
In this case, we note that the constraints are in fact 
over ←, not ←2, and hence we only need to show 
that any two of them are consistent.  Again, they 
define a subgraph of size 3, are consistent by virtue 
of running the algorithm, and thus admit some 
common model for k. 

To summarize what we have shown:  (1) Any three 
endpoint constraints on k admit a common model of 
k.  (2) Hence all endpoint constraints on k admit a 
common model.  (3) Hence for any given 
interpretation of Gk-1, we can construct an interpre-

tation of Gk.  (4) Hence G is k-consistent, which 
proves the induction step and thus the theorem. 

Additional Results 
In the preceding discussion, time points have primarily 
been of interest in formalizing and defining a restricted 
fragment of the interval algebra.  But the full point and 
the continuous point algebras are of interest too, and we 
summarize here some results concerning them. 

As can be expected, the constraint propagation algo-
rithm of Figure 4 computes closure in the point algebra.  
The proof is similar to that of closure for the continuous 
endpoint algebra (Theorem 5), but simpler, since it does 
not involve translations from intervals to points.  Details 
can be found in [van Beek & Cohen, 1989]. 

Given this, it is natural to ask whether the algorithm also 
computes closure in the full point algebra.  In fact, it 
does not.  The full point algebra includes the ≠ relation 
which is not continuous (see Figure 5).  This disconti-
nuity is exploited by a counterexample presented as a 
point relation graph in Figure 6.  The graph can be 
produced by asserting A≤B, B≤D, A≤C, C≤D, and B≠C.  
The algorithm makes the graph 3-consistent by leaving 
these five relations untouched and inferring A≤D. 

Although this graph is 3-consistent it fails to achieve 
4-consistency.  Intuitively, this is so because one of the 
options allowed by 3-consistency is that A and D are 
equal, which does not “leave room” between them for 
the disequal points B and C.  More formally, say points 
A and D are equal, so  A, B, and D are assigned the 
same model, some real number µ.  The constraints 
between these points and C, A≤C, C≤D, and B≠C 
respectively admit the following sets of models for C:  (-
∞, µ], [µ, +∞), and (-∞, µ) ≈ (µ, +∞).  Pairwise, these sets 
have non-empty intersections, as reflected in the 3-
consistent labelings of the arcs of the graph.  However, 
their common intersection is empty, and hence there 
can be no interpretation of the premises of the example 
in which A and D are equal. 

To make the graph in the example 4-consistent and 
close its premises, the relation between A and D would 
have to be <.  It can be shown [van Beek 1989, van 
Beek  & Cohen 1989] that achieving 4-consistency in 
fact computes closure for the full point algebra.  This 
can be accomplished through a variant of the algorithm 
of Figure 4 which operates in O(n4) time.  Alternatively, 



Ladkin & Maddux [1988] show that satisfying a 3-
consistent full point graph can be accomplished in O(n2) 
time.  This process maps the graph onto a model (if it 
has one) and can thus be used to tell if a 3-consistent 
graph has no interpretation. 

Additionally, we should note that just as the continuous 
point algebra induces the continuous endpoint algebra 
on intervals, the full point algebra defines an algebra of 
pointisable interval relations (Ladkin & Maddux' term).  
This algebra is a proper superset of the continuous 
endpoint algebra, and includes such relations as 
(BEFORE OVERLAPS) which can't be expressed in the 
continuous endpoint algebra.  Closure in the pointisable 
interval algebra can be computed with the same 
4-consistency algorithm as is used for the full point 
algebra (again see van Beek's articles). 

Finally, we should note that unlike the continuous 
endpoint algebra, the pointisable algebra is not 
motivated, in the authors' minds, by a broad class of 
problems such as measurement uncertainty.  Although 
such problems surely must exist, we do not have any 
good characterization of them at this time. 

Applying Temporal 
Representations 

The need for explicit temporal representations in AI 
applications, though widely acknowledged, is also widely 
finessed.  Few applications actually incorporate explicit 
reasoning about time, relying instead on heuristic 
representational short cuts. 

Among applications which do use explicit temporal 
reasoning, a significant number use representations 
isomorphic to the continuous endpoint algebra.  This is 
the case, for example, with Simmons' geological 
reasoning program [Simmons 1983].  This fragment of 
the interval algebra is also the one used by Malik and 
Binford [1983] in their spacio-temporal reasoning 
program.  In their case, though, reasoning is performed 
with linear programming tecniques (in particular, the 
Simplex algorithm).  While linear programming 
algorithms may be useful for deriving conclusions from a 
fixed set of temporal assertions, constraint propagation 
is proba-bly more appropriate for domains where 
constraints are added incrementally. 

Although many applications may be able to restrict their 
interval temporal reasoning to a tractable fragment of 
Allen's algebra, others may not.  One program that 
requires the full interval algebra is the planning system 
of Allen and Koomen [1983] in which the time extent of 
actions is modeled with intervals.  A basic operation of 
the planner is to require of two actions that they be non-
overlapping.  This is accomplished by restricting their 
temporal relation to being: 

(BEFORE MEETS MET-BY AFTER) 

As we noted above, disjunctive relations such as this fall 
outside of the tractable fragment of the interval algebra.  
As a result, this planning architecture requires one to 

consider completeness issues directly, either by relying 
on approximate algorithms, by invoking an exponential 
temporal reasoner, or by applying planning-specific 
knowledge about the ordering of actions. 

Another area of research in which temporal reasoning 
plays an important role is the semantics of natural 
language.  Understanding event references in language 
is in fact one of the original motivations for Allen's 
algebra (see [Allen 1984]).  Song and Cohen [1988] use 
a subset of the continuous endpoint algebra to capture 
the temporal relations between events in a narrative. 

In closing, we should note that the importance of consi-
dering specific applications in the context of temporal 
reasoning is in the constraints they place on the general 
representation problem.  It is in this interaction between 
application areas and knowledge representation that 
new representation areas are defined, and new 
questions are formulated. 
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