
Constraint Propagation Algorithms
for Temporal Reasoning:

A Revised Report

 Marc Vilain Henry Kautz Peter van Beek
 The MITRE Corporation AT&T Bell Laboratories Dept. of Computer Science
 Burlington Rd. 600 Mountain Ave. University of Waterloo
 Bedford, Mass. 01730 Murray Hill NJ 07974 Waterloo, Ontario, Canada N2L 3G1

Abstract: This paper revises and expands upon a paper presented by two of the present authors at AAAI 1986
[Vilain & Kautz 1986]. As with the original, this revised document considers computational aspects of interval-
based and point-based temporal representations. Computing the consequences of temporal assertions is
shown to be computationally intractable in the interval-based representation, but not in the point-based one.
However, a fragment of the interval language can be expressed using the point language and benefits from the
tractability of the latter. The present paper departs from the original primarily in correcting claims made there
about the point algebra, and in presenting some closely related results of van Beek [1989].

The representation of time has been a recurring concern
of Artificial Intelligence researchers. Many represen-
tation schemes have been proposed for temporal
reasoning; of these, one of the most attractive is James
Allen's algebra of temporal intervals [Allen 1983]. This
representation scheme is particularly appealing for its
simplicity and for its ease of implementation with
constraint propagation algorithms. Reasoners based on
this algebra have been put to use in several ways. For
example, the planning system of Allen and Koomen
[1983] relies heavily on the temporal algebra to perform
reasoning about the ordering of actions. Elegant
approaches such as this one may be compromised,
however, by computational characteristics of the interval
algebra. This paper concerns itself with the
computational aspects of Allen's algebra, and of two
variants of a simpler algebra of time points.

Our perspective here is primarily computation-theoretic.
We approach the problem of temporal representation by
asking questions of complexity and tractability. In this
light, this paper establishes some formal results about
these temporal algebras. In brief these results are:

• Determining consistency of statements in the
interval algebra is NP-hard, as is determining the
deductive closure of these statements. Allen's
polynomial-time constraint propagation algorithm
for deductive closure is thus incomplete.

• We define a restricted form of the interval
algebra, concerned with measuring the relative
durations of events. This algebra can be
formulated in terms of a time point algebra
without disequality (≠). Allen's propagation
algorithm is sound and complete for this
fragment, and operates in O(n3) time and O(n2)
space.

• We also define a broader interval algebra
fragment, corresponding to the time point algebra
with ≠. A variant propagation algorithm performs
closure in this fragment in O(n4) time.

Throughout the paper, we consider how these formal
results affect practical Artificial Intelligence programs.

The Interval Algebra
Allen's interval algebra has been described in detail in
[Allen 1983]. In brief, the elements of the algebra are
relations that may exist between intervals of time.
Because the algebra allows for indefiniteness in
temporal relations, it admits many possible relations
between intervals (213 in fact). But all of these relations
can be expressed as vectors of definite simple relations,
of which there are only thirteen. The thirteen simple

A BA BEFORE B
B AFTER A

A BA MEETS B
B MET-BY A

A
BA OVERLAPS B

B OVERLAPPED-BY A

A
BA STARTS B

B STARTED-BY A

A
BA DURING B

B CONTAINS A

A
BA ENDS B

B ENDED-BY A

A
B

A EQUALS B

Figure 1: Simple Interval Relations

relations, whose illustration appears in Figure 1,
precisely characterize the relative starting and ending
points of two temporal intervals. If the relation between
two intervals is completely defined, then it can be
exactly described with a simple relation.1 Alternatively,
vectors of simple relations introduce indefiniteness in
the description of how two temporal intervals relate.
Vectors are interpreted as denoting the set of possible
simple relations that hold between two intervals.
Informally, a vector of simple relations can be
understood as the “disjunction” of its constituent
relations.

? ? ?

A C

B

? ?

Figure 3: Multiplying Relation Vectors

BREAKFAST LUNCH

COFFEE

PAPER
? ? ?

Figure 2: Simple Relation and Relation Vector

Two examples will serve to clarify these distinctions (see
Figure 2). Consider the simple relations BEFORE and
AFTER: they hold between intervals that strictly follow
each other, without overlapping or meeting. The two
differ by the order of their arguments: today John ate
breakfast BEFORE he ate lunch, and he ate lunch
AFTER he ate breakfast. To illustrate relation vectors,
consider the vector (BEFORE MEETS OVERLAPS). It
holds between two intervals whose starting points strictly
precede each other, and whose ending points strictly
precede each other. The relation between the ending
point of the first interval and the starting point of the
second is left ambiguous. For instance, say this morning
John started reading the paper before starting breakfast,
and he finished the paper before his last sip of coffee. If
we didn't know whether he was done with the paper
before starting his coffee, at the same time as he started
it, or after, we would then have the paper reading
(BEFORE MEETS OVERLAPS) the coffee drinking.

Returning to our formal discussion, we note that the
interval algebra is principally defined in terms of vectors.
Although simple relations are an integral part of the
formalism, they figure primarily as a convenient way of
notating vector relations. The mathematical operations
defined over the algebra are given in terms of vectors;
in a reasoner built on the temporal algebra, all user
assertions are made with vectors.

Two operations, an addition and a multiplication, are
defined over vectors in the interval algebra. Given two
different vectors describing the relation between the
same pair of intervals, the addition operation “intersects”
these vectors to provide the least restrictive relation that

1 In fact, these thirteen simple relations can be in turn

precisely axiomatized using only one truly primitive relation.
For details, see [Allen & Hayes, 1985].

the two vectors together admit. The need to add two
vectors arises from situations where one has several
independent measures of the relation of two intervals.
These measures are combined by summing the relation
vectors for the measures. For example, say the relation
between intervals A and B has been derived by two valid
measures as being both

V1 = (BEFORE MEETS OVERLAPS)
V2 = (OVERLAPS STARTS DURING).

To find the relation between A and B, that is implied by
V1 and V2, the two vectors are summed:

V1 + V2 = (OVERLAPS).

Algorithmically, the sum of two vectors is computed by
finding their common constituent simple relations.

Multiplication, or vector composition, is defined between
pairs of vectors that relate three intervals A, B, and C.
More precisely, if V1 relates intervals A and B, and V2
relates B and C, the product of V1 and V2 is the least
restrictive relation between A and C that is permitted by
V1 and V2. Consider, for example, the situation in
Figure 3. If we have

V1 = (BEFORE MEETS OVERLAPS)
V2 = (BEFORE MEETS)

then the product of V1 and V2 is

V1 x V2 = (BEFORE)

As with addition, the multiplication of two vectors is
computed by inspecting their constituent simple
relations. The constituents are pairwise multiplied by
following a simplified multiplication table, and the results
are combined to produce the product of the two vectors.
See [Allen 1983a] for details.

Determining Closure in the
Interval Algebra

To an application reasoning with Allen's interval algebra,
the primary operation of interest is determining the
closure of a set of temporal assertions. This can be
understood as a deductive closure. Given as premise a
set of temporal assertions, the closure consists of all the
temporal relations which follow from the premises.

To formalize this notion, we need to turn to some model-
theoretic considerations. For our purposes, temporal
intervals can be modelled as pairs of distinct numbers
on the real line. (Other axiomatizations exist: the
rational numbers [Ladkin 1987] or the integers [Allen &

Hayes 1985], but these distinctions are not crucial here.)
Given a set of intervals I with assertions relating the
intervals in I, an interpretation of these temporal
relations is thus a mapping from each interval in I to a
consistent model, i.e., to some pair of reals on the time
line which is consistent with the premise assertions.

{ Table is a two-dimensional array indexed by

intervals, in which Table[i,j] holds the relation
between intervals i and j. Table[i,j] is initialized to
the additive identity vector consisting of all thirteen
simple relations; except for Table[i,i], which is
intialized to (EQUALS).

 Queue is a FIFO data structure that keeps track of
pairs of intervals whose relation has been
changed.

Computing the closure of the premise relations on I
consists of determining the minimal relation vectors
between each i and j in I. Such a minimal vector
between i and j consists only of the consistent simple
relations of the premise vector, i.e., those which are
satisfied by some interpretation of the premises. We
can think of this as discarding the inconsistent simple
relations from all the premise assertions on I. See [van
Beek 1989] for details.

 Intervals is a list of all intervals about which
assertions have been made. }

To Add Ri,j
 { Ri,j is a relation being asserted between i and j. }

In Allen's model, closure is computed with a constraint
propagation algorithm. The operation of this forward-
chaining algorithm is driven by a queue. Every time the
relation between two intervals i and j is changed, the
pair <i,j> is placed on the queue. The closure algorithm,
shown in Figure 4, is initiated by calling procedure
Close, and operates by removing interval pairs from the
queue. For every pair <i,j> that it removes, the
algorithm determines whether the relation between i and
j can be used to constrain the relation between i and
other intervals in the database, or between j and these
other intervals. If a new relation can be successfully
constrained, then the pair of intervals that it relates is in
turn placed on the queue. The process terminates when
no more relations can be constrained.

 begin
 Old ♦ Table[i,j];
 Table[i,j] ♦ Table[i,j] + Ri,j;
 if Table[i,j] ≠ Old
 then Place pair <i,j> on fifo Queue;
 Intervals ♦ Intervals ≈ {i,j};
 end;

To Close
 { Compute the closure of assertions added to the

 database. }
 while Queue is not empty do
 begin
 Get next <i,j> from Queue;
 Propagate(i,j);

As Allen suggests [1983a], this constraint propagation
algorithm runs to completion in time polynomial with the
number of intervals in the temporal database. He
provides an estimate of O(n2) calls to the Propagate
procedure. A more fine-grained analysis reveals that
when the algorithm runs to completion, it will have
performed O(n3) multiplications and additions of
temporal relation vectors.

 end;

To Propagate(i, j)
 { Propagates the change to the relation between i

 and j to all other intervals. }
 for each interval k in Intervals do
 begin
 Temp ♦ Table[i,k] + (Table[i,j] x Table[j,k]);
 if Temp = � { � is the inconsistent vector. }
 then Signal contradiction;
 if Table[i,k] ≠ Temp
 then Place pair <i,k> on Queue;
 Table[i,k] ♦ Temp;
 Temp ♦ Table[k,j] + (Table[k,i] x Table[i,j]);
 if Temp = �
 then Signal contradiction;
 if Table[k,j] ≠ Temp
 then Place pair <k,j> on Queue;
 Table[k,j] ♦ Temp;

Theorem 1: Let I be a set of n intervals about which
m assertions have been added with the Add
procedure. When invoked, the Close procedure will
run to completion in O(n3) time.

Proof: A pair of intervals <i,j> is entered on Queue
when its relation, stored in Table[i,j], is non-trivially
updated. First note that no more than O(n2) pairs of
intervals <i,j> are ever entered onto the queue.
This is because there are only n2 relations possible
between the n intervals, and because each relation
can only be non-trivially updated a constant number
of times. This constant bound arises because
every non-trivial update by definition removes at
least 1 simple relation from the vector encoding the
relation between i and j. Since there are only 13
such relations, <i,j> can only be updated at most 13
times.

 end;

 Figure 4:Constraint propagation algorithm.

Next, note that every time a pair <i,j> is removed
from Queue for updating, the algorithm performs
O(n) vector operations. These operations occur in

the Propagate procedure when comparing the
relation between intervals i and j to that between j
and k, and also to that between k and i. There are
n such k, and each set of comparisons requires 2
vector additions and 2 vector multiplications,
leading to an overall cost of 2n vector additions and
2n vector multiplications to update <i,j>.

To complete the proof, we see that each of the
O(n2) updates required for computing closure in
turn requires O(n) computation, leading to an
overall complexity of O(n3) vector operations.

The vector operations can be considered here to take
constant time. By encoding vectors as bit strings,
addition can be performed with a 13-bit integer AND
operation. For multiplication, the complexity is actually
O(|V1| x |V2|), where |V1| and |V2| are the “lengths” of the
two vectors to be multiplied (i.e., the number of simple
constituents in each vector). Since vectors contain at
most 13 simple constituents, the complexity of
multiplication is bounded, and the idealization of
multiplication as operating in constant time is
acceptable.

Note that the polynomial time characterization of the
constraint propagation algorithm of Figure 4 is
somewhat misleading. Indeed, Allen [1983]
demonstrates that the algorithm is sound, in the sense
that it never infers an invalid consequence of a set of
assertions. However, Allen also shows that the algorithm
is incomplete: he produces an example in which the
algorithm does not make all the inferences that follow
from a set of assertions. He suggests that computing
the closure of a set of temporal assertions might only be
possible in exponential time. Regrettably, this appears
to be the case. As we demonstrate in the following
paragraphs, computing closure in the interval algebra is
an NP-complete problem.

Intractability of the Interval
Algebra

To demonstrate that computing the closure of asser-
tions is NP-complete, we first show that determining the
consistency (or satisfiability) of a set of assertions is NP-
hard. We then extend this to NP-complete and show
the consistency and closure problems to be equivalent.

Theorem 2: Determining the satisfiability of a set of
assertions in the interval algebra is NP-hard.

Proof (Due to Kautz): The theorem is proven by
reducing the 3-clause satisfiability problem (or
3-SAT) to the problem of determining satisfiability of
assertions in the interval algebra. To do this, we
construct a (computationally trivial) mapping
between a formula in 3-SAT form2 and an
equivalent encoding of the formula in the interval
algebra. Conceptually, this is done by creating
three groups of intervals. One group enforces the

2 3-SAT formulæ are of form (A Δ B Δ C) �…� (X Δ Y Δ Z)

law of excluded middles; the second one encodes
the literals of the formula; and the third encodes
the clauses of the formula.

The first group consists of the single interval
middle. This interval determines the truth
assignments for all other intervals: those that fall
before middle correspond to false terms, and those
that fall after correspond to true terms.

Turning to the second group of intervals, we create
for each literal P in the formula, and its negation ¬P,
a pair of intervals, P and notP. These intervals are
then related to middle by creating the middle-
excluding interval PXnotP (for P excludes ¬P), and
asserting:

 middle (DURING) PXnotP
 P (MEETS MET-BY) PXnotP
 notP (MEETS MET-BY) PXnotP
 P (BEFORE AFTER) notP

The effect of the second and third assertions is to
cause P and notP to either meet or be met by
PXnotP. The fourth assertion makes this choice
mutually exclusive. Since any interval preceding
middle is taken to be false, the first assertion
ensures the falseness of whichever of P and notP
ends up meeting PXnotP. The other of the two will
be met by PXnotP, and hence follow middle and
be true.

The encoding of the formula's clauses is handled by
a third group of intervals, and proceeds as follows.
For each clause P Δ Q Δ R, we create a clausal
interval PorQorR which is used to impose a truth
assignment on the literals of the disjunct. The key
to this encoding is that no more than two of the
literals' intervals are allowed to precede middle
(and be false). This guarantees that one of the
literals' intervals must follow middle, and hence be
true, and hence cause the clause to be satisfied.
This encoding is accomplished through place-
holder intervals forP, forQ, and forR, one set of
which is generated for each clause. The following
assertions are made of the place-holders.

Place-holders contain their literals:
 forP (CONTAINS) P
 forQ (CONTAINS) Q
 forR (CONTAINS) R

Place-holders must be true or false:
 forP (BEFORE AFTER) middle
 forQ (BEFORE AFTER) middle
 forR (BEFORE AFTER) middle

At most two false place-holder positions:
 forP (MEETS STARTS AFTER) PorQorR
 forQ (MEETS STARTS AFTER) PorQorR
 forR (MEETS STARTS AFTER) PorQorR

Placement of the clausal interval:
 PorQorR (CONTAINS) middle

Place-holders don't overlap:

 forP (BEFORE AFTER MEETS MET-BY) forQ
 forQ (BEFORE AFTER MEETS MET-BY) forR
 forR (BEFORE AFTER MEETS MET-BY) forP

The first group of assertions relates the place-
holders to their literals. The second, third, and
fourth groups of assertions ensures that a place-
holder interval can only be in one of two positions
on the false side of middle. The fifth group makes
the place-holders mutually exclusive, and
guarantees that only one of the place-holders can
be in each of the allowed false positions.

To complete the proof, we note that the interval
encoding of the 3–SAT formula can clearly be
performed in time polynomial in the length of the
formula. From the preceding discussion, it also
follows that the formula is satisfiable just when its
encoding as interval assertions is satisfiable too.
Since 3-SAT is NP-complete, it follows that
determining satisfiability of assertions in the interval
algebra is in turn NP-hard.

This NP-hardness result can be strengthened somewhat
to NP-completeness by the following proposition.

Theorem 3: Determining the satisfiability of a set of
assertions in the interval algebra is in NP, and is
hence NP-complete.

Proof: To show that satisfiability of a set of interval
assertions is in NP, we only need show that we can
guess an interpretation for the assertions and then
verify it in polynomial time. To construct the inter-
pretation, we just choose a random ordering of the
intervals' endpoints, possibly making some of them
the same. To verify the interpretation we just check
that the original assertions are satisfied by the
ordering. If we started with n intervals, there will be
O(n2) assertions to check, each of which is veri-
fiable in constant time. Interval satisfiability is thus
in NP, and being NP-hard, it is thus NP-complete.

The following theorem extends the NP-completeness
result for the problem of determining satisfiability of
assertions in the interval algebra to the problem of
determining closure of these assertions.

Theorem 4: The problems of determining the
satisfiability of assertions in the interval algebra and
determining their closure are equivalent, in that
there are polynomial-time mappings between them.

Proof: First we show that determining closure
follows readily from determining consistency. To do
so, assume the existence of an oracle for
determining the consistency of a set of assertions in
the interval algebra. To determine the closure of
the assertions, we run the oracle thirteen times for
each of the O(n2) pairs <i,j> of intervals mentioned
in the assertions. Specifically, each time we run the
oracle on a pair <i,j>, we provide the oracle with the
original set of assertions and the additional
assertion i (R) j, where R is one of the thirteen
simple relations. The relation vector that holds

between i and j is the one containing those simple
relations that the oracle didn't reject.

To show that determining consistency follows from
determining closure, assume the existence of a
closure algorithm. To see if a set of assertions is
consistent, run the algorithm, and inspect each of
the O(n2) relations between the n intervals
mentioned in the assertions. The database is
inconsistent if any of these relations is the
inconsistent vector: this is the vector composed of
no constituent simple relations.

The three preceding theorems demonstrate that compu-
ting the closure of assertions in the interval algebra is
NP-complete. This result casts great doubts on the
computational tractability of the algebra, as no NP-
complete problem is known to be solvable in less than
exponential time.

Consequences of Intractability
Several authors have described exponential-time
algorithms that compute the closure of assertions in the
interval algebra, or some subset thereof. Valdés-Pérez
[1987] proposes a heuristically pruned algorithm which
is sound and complete for the full algebra. The
algorithm is based on analysis of set-theoretic
constructions. Malik & Binford [1983] can determine
closure for a fraction of the interval algebra with the
(worst-case) exponential Simplex algorithm. As we shall
see below, the fragment that they consider is actually
tractable, and the expected performance of Simplex
would be polynomial for their application.

Even though the interval algebra is intractable, it isn't
necessarily useless. Indeed, it is almost a truism of
Artificial Intelligence that all interesting problems are
computationally at least NP-complete! There are
several strategies that can be adopted to put the algebra
to work in practical systems. The first is to cluster
intervals into small self-contained groups, with limited
interconnection between the clusters. Within a cluster,
the asymptotically exponential performance of a
complete temporal reasoner need not be noticeably
poor. This is in fact the approach taken by Malik and
Binford to manage the performance of their Simplex-
based system. More recently, Koomen [1989] has
developed algorithms for automatically clustering
intervals according to Allen's reference interval strategy.
Unfortunately, clustering techniques such as these are
most applicable only in domains with little global
interconnectivity between time intervals.

Another overall strategy is to stick to the polynomial-time
constraint propagation closure algorithm, and accept its
incompleteness. This is acceptable for applications
which use a temporal database to notate the relations
between events, but don't particularly require much
inference from the temporal reasoner. For applications
which make heavy use of temporal reasoning, however,
this may not be an option.

Restricting the Interval Algebra

An alternative approach to containing the computational
cost of interval reasoning is to consider fragments of the
full interval algebra for which closure is tractable. These
fragments may be naturally matched to certain
problems.

Models of A for AŠB
B

µ2µ1

Models of A for A°B
B

µ1 µ2

One fragment of which this is true arises in the context
of relating the duration of events observed to occur in
the world. This class of problems imposes a significant
reduction in the degree of representational ambiguity
that is required of the interval algebra. Indeed,
assuming that one is simultaneously observing several
events as they occur, representational ambiguity only
arises as a result of one's inability to resolve the exact
duration of each event. In terms of the interval algebra,
this corresponds to an inability to resolve the relative
position of two intervals' endpoints. Returning to an
earlier example, while observing John eating his
breakfast, we might have clearly seen him opening his
newspaper before starting his coffee. However, we
might not be able to tell whether he was done reading
before he started his coffee, along with starting it, or
afterwards (see Figure 2).

Figure 5: Models of point relations.

Viewing measurement uncertainty of this type in terms
of interval endpoint uncertainty allows us to produce an
algebraic encoding of the phenomenon. This kind of
encoding is especially of interest in the context of
qualitative reasoning, as qualitative applications favor
these kind of algebraic methods. We should also note
that in formalizing the encoding, we must ensure that it
has the property that uncertainty be continuous in the
following sense. Although we can place upper and
lower bounds on when we may have observed an event
to start or end, we typically can not exclude any time
within that range as a possible start or end point. For
example, we can't exclude John's coffee drinking from
starting at the same time as his paper reading finishes.
As we shall see below, the class of interval relations that
display this continuous endpoint uncertainty has a
tractable closure algorithm. Before proving this result,
however, we first need to consider time points per se.

Time Point Algebras
For our purposes, time points can be modelled by the
real numbers, and their relations can be entirely
expressed as inequalities. As with intervals these
relations can be decomposed into disjunctions of simple
relations, which in this case number three: <, =, and >.
Seven consistent vectors can then be formed : (<), (=),
(>), (< =), (= >), (< = >), and (< >). Abusing notation, we
will refer to these vectors as <, =, >, ≤, ≥, ?, and ≠
respectively. Again, as with intervals, the algebra of
points supports an addition and a multiplication. These
operations are defined by the following two tables, in
which the 0 entry represents the inconsistent vector.

+ < ≤ > ≥ = ≠ ?
< < < 0 0 0 < <
≤ < ≤ 0 = = < ≤
> 0 0 > > 0 > >
≥ 0 = > ≥ = > ≥
= 0 = 0 = = 0 =

≠ < < > > 0 ≠ ≠
? < ≤ > ≥ = ≠ ?

x < ≤ > ≥ = ≠ ?
< < < ? ? < ? ?
≤ < ≤ ? ? ≤ ? ?
> ? ? > > > ? ?
≥ ? ? > ≥ ≥ ? ?
= < ≤ > ≥ = ≠ ?
≠ ? ? ? ? ≠ ? ?
? ? ? ? ? ? ? ?

As with the interval algebra, addition is used to combine
two different measures of the relation of two points.
Multiplication is used to determine the relation between
two points A and B, given the relations between each of
A and B and some intermediate point C.

We can define a property of a subset of the time point
algebra which is of particular interest in formalizing the
restricted interval algebra presented above. We say
that the relation between two time points is continuous if
the set of models that it admits for each time point, as a
function of the other, is convex. The models of a time
point are a set of real numbers, and for this set to be
convex, the range of numbers between any two models
must also all be models. For example, if we have A ≤ B,
the models of A are all the real numbers less than or
equal to B. Take any two of these models, calling them
µ1 and µ2. The range of real numbers between them
are also all less than or equal to B, and are hence also
models of A. In contrast, if we have A ≠ B, A's models
are all the reals except B: { x | x < B } ≈ { x | x > B } This
set is not convex, since one can pick two models of A,
µ1=B-∂ and µ2=B+∂ for example, which span the gap
imposed by B's exclusion. Since B is a real number in
the range between µ1 and µ2, but is not a model of A,
the models of A are not convex . See Figure 5.

This property of continuity is true of all relations in the
point algebra except ≠. What is more, the point algebra
restricted to continuous relations is in turn an algebra
with a well-defined addition and multiplication. We will
refer to this algebra as the continuous point algebra.

Continuous Endpoint Uncertainty

Having developed these properties of time points, we
can now return to formalizing the restricted interval
algebra we discussed above. Recall that we were
interested in interval relations that could be modelled by
a continuous uncertainty in the relationship of their
endpoints. This property can in fact be characterized in
terms of continuous point relations. To this extent, we
define the continuous endpoint algebra as that subset of
the interval algebra which can be entirely encoded as
conjunctions of continuous time point relations between
the endpoints of intervals.

This algebra includes relations such as the vector
(BEFORE MEETS OVERLAPS) from the coffee and
newspaper example of Figure 2. The relation between
these intervals is described by the conjunction of the
following point relations, in which (e.g.) coffee- and
coffee+ denote the start point and end point of interval
coffee respectively.

paper - < paper +
paper - < coffee -
paper + ? coffee -
paper + < coffee +
coffee - < coffee +

Interval relations precluded from the restricted algebra
include, for example (BEFORE OVERLAPS). Indeed,
encoding (BEFORE OVERLAPS) in terms of interval
endpoints requires the non-continuous point relation ≠:

(BEFORE OVERLAPS)
 + λ x,y. (x - < x +)�(x - < y -)�(x + ≠ y -)�
 (x + < y +)�(y - < y +)

Note that this restriction on what can be expressed with
continuous endpoint uncertainty matches the intuitive
requirements we gave above for our encoding of
measurement uncertainty.

Another class of interval relations that lie outside the
scope of the continuous endpoint algebra are the truly
disjunctive relations such as(BEFORE AFTER). This
particular example can not even be encoded as a
conjunction of non-continuous point relations. Indeed to
model (BEFORE AFTER) with interval endpoints
requires explicit disjunction:

(BEFORE AFTER)
 + λ x,y. (x + < y -)…Δ…(x - > y +)

The proof of NP-hardness for deductive closure in the
interval algebra was critically dependent on just such
disjunctions of interval relations as these. Since the
continuous endpoint algebra precludes all but the
simplest forms of disjunction, it is natural to ask whether
computing closure in the continuous endpoint algebra is
in fact tractable. As we alluded to above, the following
theorem is true.

Theorem 5: The constraint propagation algorithm of
Figure 4 computes the closure of assertions in the
continuous endpoint algebra.

A proof of this theorem appears in [van Beek 1989] and
is elaborated in [van Beek & Cohen 1989]. What follows
is a model-theoretic variant of the proof.

Given a set of intervals I, whose relations are initially
described by a set of assertions R, we need to show that
the algorithm computes the minimal relation between all
i and j in I, given R. The proof notes that the intervals in
I and the relations computed to hold between them form
a graph G, in which the vertices are intervals and the
arcs are relations. Underlying the proof is a notion of
graph consistency adapted from Freuder [1982]. We
say that an interval graph G is k-consistent if given any
consistent assignment of k-1 of its intervals to pairs of
real numbers, there is a consistent assign-ment of any
kth interval. The first assignment is an interpretation of
Gk-1, the subgraph of G defined by the k-1 intervals, and
the second is an interpretation of Gk, the subgraph
defined by all k intervals. Continuing, we define strong
k-consistency as j-consistency for all j≤k.

An important consequence of this definition is that any
strongly k-consistent graph has the following property.
Take Gk, a k-sized subgraph of G containing intervals i
and j. Then for any model of i and any model of j which
are consistent with the intervals' relation in Gk, there is
an interpretation of Gk which maps i and j to these
models. Now, given any simple relation holding
between i and j, we can always construct models of i
and j which satisfy the relation, and which thus appear in
some interpretation of Gk. In the case where k=n, the
size of G, this is equivalent to saying that any simple
relation on any arc between any two intervals in G
appears in some interpretation of G. That is, if G is
strongly n-consistent, then the relations holding between
its intervals are minimal and closure of its premises has
been computed.

We now use this property to prove Theorem 5, by
showing that the constraint propagation algorithm
computes k-consistency on an interval graph of size n,
for all k≤n.

Proof (of theorem 5): The proof is by induction on
the size of subgraphs of an interval graph G.

Basis: k=1, 2, or 3. It is clear that for k=1 (single
intervals) or k=2 (pairs of intervals), any labelling of
the arcs is k-consistent. For k=3, we note that
Mackworth [1977] and Montanari [1974] have
shown that algorithms equivalent to that in Figure 4
achieve 3-consistency.

Induction: Assuming the graph is strongly
(k-1)-consistent, we need to show that it is also
k-consistent for any k such that 4≤k≤n. That is,
given an interpretation for Gk-1, a (k-1)-sized
subgraph of G, and given any interval k not in Gk-1,
we need to find a model of k that yields an interpre-

tation for Gk, the graph produced by expanding Gk-1
to include k.

B

C

A D

Š

Š Š

Š
°Š

To do so, we note that the interpretation we were
given for Gk-1 assigns a model to each of its consti-
tuent intervals i . Given such a model, the relation
between i and k constrains the possible models of k
to forming a set in ←2. The set is in ←2 because
the models of k are pairs of reals. To produce our
desired model of k , we need to show that all the
constraint sets have some model in common.

Figure 6: 3- but not 4-Consistent Points

We proceed by noting that the relation between any
i in Gk-1 and k is from the continuous endpoint
algebra, and so encodes one or more continuous
point relations between the intervals' endpoints.
The models of k induced by each such endpoint
relation Ri±,k± are thus convex sets. For example,
the endpoint relation i + < k - induces the following
convex set of models for k :

{ <x,y> � ←2 | x > i + and y � ← }

The models of k being convex allows us to apply a
theorem of linear programming due to Helly
[Chvátal 1983]. Stating the theorem, let F be a
finite family of at least n+1 convex sets in ←n,
where every n+1 sets in F have a common point (in
←n). Then all sets in F have a common point.

The model sets for k are in ←2 (i.e., n=2 in Helly's
theorem), so to prove Theorem 5 we only need
show that any three model sets for k have a
common point. This is equivalent to showing that
their three corresponding endpoint constraints are
consistent. There are two cases depending on
whether one of the constraint sets corresponds to k
- < k +.

Case 1: The three constraints have form i± Ri±,k- k
-, k - < k +, and k + Rk+,j± j±. Note that these three
constraints define a subgraph of size 3 which is
3-consistent by virtue of having run the algorithm.
Hence the three constraints are consistent and
admit some common model for k.

Case 2: The constraints are all of form i± Ri±,k± k ±.
In this case, we note that the constraints are in fact
over ←, not ←2, and hence we only need to show
that any two of them are consistent. Again, they
define a subgraph of size 3, are consistent by virtue
of running the algorithm, and thus admit some
common model for k.

To summarize what we have shown: (1) Any three
endpoint constraints on k admit a common model of
k. (2) Hence all endpoint constraints on k admit a
common model. (3) Hence for any given
interpretation of Gk-1, we can construct an interpre-

tation of Gk. (4) Hence G is k-consistent, which
proves the induction step and thus the theorem.

Additional Results
In the preceding discussion, time points have primarily
been of interest in formalizing and defining a restricted
fragment of the interval algebra. But the full point and
the continuous point algebras are of interest too, and we
summarize here some results concerning them.

As can be expected, the constraint propagation algo-
rithm of Figure 4 computes closure in the point algebra.
The proof is similar to that of closure for the continuous
endpoint algebra (Theorem 5), but simpler, since it does
not involve translations from intervals to points. Details
can be found in [van Beek & Cohen, 1989].

Given this, it is natural to ask whether the algorithm also
computes closure in the full point algebra. In fact, it
does not. The full point algebra includes the ≠ relation
which is not continuous (see Figure 5). This disconti-
nuity is exploited by a counterexample presented as a
point relation graph in Figure 6. The graph can be
produced by asserting A≤B, B≤D, A≤C, C≤D, and B≠C.
The algorithm makes the graph 3-consistent by leaving
these five relations untouched and inferring A≤D.

Although this graph is 3-consistent it fails to achieve
4-consistency. Intuitively, this is so because one of the
options allowed by 3-consistency is that A and D are
equal, which does not “leave room” between them for
the disequal points B and C. More formally, say points
A and D are equal, so A, B, and D are assigned the
same model, some real number µ. The constraints
between these points and C, A≤C, C≤D, and B≠C
respectively admit the following sets of models for C: (-
∞, µ], [µ, +∞), and (-∞, µ) ≈ (µ, +∞). Pairwise, these sets
have non-empty intersections, as reflected in the 3-
consistent labelings of the arcs of the graph. However,
their common intersection is empty, and hence there
can be no interpretation of the premises of the example
in which A and D are equal.

To make the graph in the example 4-consistent and
close its premises, the relation between A and D would
have to be <. It can be shown [van Beek 1989, van
Beek & Cohen 1989] that achieving 4-consistency in
fact computes closure for the full point algebra. This
can be accomplished through a variant of the algorithm
of Figure 4 which operates in O(n4) time. Alternatively,

Ladkin & Maddux [1988] show that satisfying a 3-
consistent full point graph can be accomplished in O(n2)
time. This process maps the graph onto a model (if it
has one) and can thus be used to tell if a 3-consistent
graph has no interpretation.

Additionally, we should note that just as the continuous
point algebra induces the continuous endpoint algebra
on intervals, the full point algebra defines an algebra of
pointisable interval relations (Ladkin & Maddux' term).
This algebra is a proper superset of the continuous
endpoint algebra, and includes such relations as
(BEFORE OVERLAPS) which can't be expressed in the
continuous endpoint algebra. Closure in the pointisable
interval algebra can be computed with the same
4-consistency algorithm as is used for the full point
algebra (again see van Beek's articles).

Finally, we should note that unlike the continuous
endpoint algebra, the pointisable algebra is not
motivated, in the authors' minds, by a broad class of
problems such as measurement uncertainty. Although
such problems surely must exist, we do not have any
good characterization of them at this time.

Applying Temporal
Representations

The need for explicit temporal representations in AI
applications, though widely acknowledged, is also widely
finessed. Few applications actually incorporate explicit
reasoning about time, relying instead on heuristic
representational short cuts.

Among applications which do use explicit temporal
reasoning, a significant number use representations
isomorphic to the continuous endpoint algebra. This is
the case, for example, with Simmons' geological
reasoning program [Simmons 1983]. This fragment of
the interval algebra is also the one used by Malik and
Binford [1983] in their spacio-temporal reasoning
program. In their case, though, reasoning is performed
with linear programming tecniques (in particular, the
Simplex algorithm). While linear programming
algorithms may be useful for deriving conclusions from a
fixed set of temporal assertions, constraint propagation
is proba-bly more appropriate for domains where
constraints are added incrementally.

Although many applications may be able to restrict their
interval temporal reasoning to a tractable fragment of
Allen's algebra, others may not. One program that
requires the full interval algebra is the planning system
of Allen and Koomen [1983] in which the time extent of
actions is modeled with intervals. A basic operation of
the planner is to require of two actions that they be non-
overlapping. This is accomplished by restricting their
temporal relation to being:

(BEFORE MEETS MET-BY AFTER)

As we noted above, disjunctive relations such as this fall
outside of the tractable fragment of the interval algebra.
As a result, this planning architecture requires one to

consider completeness issues directly, either by relying
on approximate algorithms, by invoking an exponential
temporal reasoner, or by applying planning-specific
knowledge about the ordering of actions.

Another area of research in which temporal reasoning
plays an important role is the semantics of natural
language. Understanding event references in language
is in fact one of the original motivations for Allen's
algebra (see [Allen 1984]). Song and Cohen [1988] use
a subset of the continuous endpoint algebra to capture
the temporal relations between events in a narrative.

In closing, we should note that the importance of consi-
dering specific applications in the context of temporal
reasoning is in the constraints they place on the general
representation problem. It is in this interaction between
application areas and knowledge representation that
new representation areas are defined, and new
questions are formulated.

Acknowledgements
This research was supported in part by the Defense
Advanced Research Projects Agency of the United
States under contracts N00014-85-C-0079 and N00014-
77-C-0378, and by the Natural Sciences and
Engineering Research Council of Canada.

References
Allen, J. F. (1983). Maintaining Knowledge about Tem-

poral Intervals. Communications of the ACM 26(1):
832-843.

Allen, J. F. (1984). Towards a General Theory of Action
and Time. Artificial Intelligence 23(2): 123-154.

Allen, J. F. & Hayes, P. J. (1985). A Common-Sense
Theory of Time. In Proceedings of the Ninth IJCAI,
Los Angeles, Calif., pp. 528-531.

Allen, J. F. & Koomen, J. A. (1983). Planning Using a
Temporal World Model. In Proceedings of the Eighth
IJCAI, Karlsruhe, W. Germany, pp. 741-747.

Chvátal, V. (1983). Linear Programming. New York:
W. H. Freeman and Company.

Freuder, E. C. (1982). A Sufficient Condition for Back-
track-Free Search. Journal of the ACM 29: 24-32.

Koomen, J. A. (1989). Localizing Temporal Constraint
Propagation. In Proceedings of KR 89, pp. 198-202.

Ladkin, P. B. (1987). Models of Axioms for Time
Intervals. In Proceedings of the Sixth AAAI, Seattle,
Wash., pp 234-239.

Ladkin, P. B. & Maddux, R. (1988). On Binary
Constraint Networks. Technical Report, Kestrel
Institute, Palo Alto, Calif.

Mackworth, A. K. (1977). Consistency in Networks of
Relations. Artificial Intelligence 8: 99-118.

Montanari, U. (1974). Networks of Constraints:
Fundamental Properties and Applications to Picture
Processing. Information Science 7: 95-132.

Malik, J. & Binford, T. O. (1983). Reasoning in Time
and Space. In Proceedings of the Eighth IJCAI,
Karlsruhe, W. Germany, pp. 343-345.

Simmons, R. G. (1983). The Use of Qualitative and
Quantitative Simulations. In Proceedings of the Third
AAAI, Washington D.C., pp. 364-368.

Song, F. & Cohen, R. (1988). The Interpretation of
Temporal Relations in Narrative. In Proceedings of
the Seventh AAAI, Saint Paul, Minn., pp. 745-750.

Valdés-Pérez, R. E. (1987). The Satisfiability of
Temporal Constraint Networks. In Proceedings of the
Sixth AAAI, Seattle, Wash., pp 256-260.

van Beek, P. (1989). Approximation Algorithms for
Temporal Reasoning. In Proceedings of the Tenth
IJCAI, Detroit, Mich.

van Beek, P. & Cohen R. (1989). Approximation Algo-
rithms for Temporal Reasoning, Research Report
CS-89-12, Dept. of Computer Science, U. of
Waterloo.

Vilain, M. B., & Kautz, H. (1986). Constraint Propaga-
tion Algorithms for Temporal Reasoning. In Procee-
dings of the Fifth AAAI, Philadelphia, PA, pp.377-382.

